
To
 a

pp
ea

r i
n 

Pr
oc

. 1
1t

h 
In

tl.
 C

on
f. 

on
 D

at
a 

En
gg

., 
19

95

The AQUA Approach to Querying Lists and

Trees in Object�Oriented Databases�

Bharathi Subramanian Theodore W� Leung

Brown Universityy Brown Universityy

Scott L� Vandenberg Stanley B� Zdonik

Siena Collegez Brown Universityy

Abstract

Relational database systems and most object�
oriented database systems provide support for queries�
Usually these queries represent retrievals over sets or
multisets� Many new applications for databases� such
as multimedia systems and digital libraries� need sup�
port for queries on complex bulk types such as lists
and trees� In this paper we describe an object�oriented
query algebra for lists and trees� The operators in the
algebra preserve the ordering between the elements of a
list or tree� even when the result list or tree contains an
arbitrary set of nodes from the original tree� We also
present predicate languages for lists and trees which
allow order�sensitive queries because they use pattern
matching to examine groups of list or tree nodes rather
than individual nodes� The ability to decompose pred�
icate patterns enables optimizations that make use of
indices�

� Introduction

Database query languages have primarily focused
on sets �and sometimes multisets� while in this paper
we enhance them to include lists and trees� Computer
applications are becoming more sophisticated and re�
quire higher�level support for managing complex data�
Many advanced application areas stress the bound�
aries of current database querying technology and re�
quire query support over bulk types more complex
than sets and multisets� For example� multi�media

�Partial support for this work was provided by the Ad�

vanced Research Projects Agency under contract N���������

J����� ARPA order ����	 and contract DAAB��
����C�Q���

under subcontract F������

y Dept� of Computer Science	 Brown University	 Providence	

RI �����������

z Dept� of Computer Science	 Siena College	 Loudonville	

NY �����

systems must manage many di�erent data types� such
as text� video� and audio� Here� a document can be
viewed as a tree of document components� a video is
a sequence of frames� a sound�track is a sequence of
tones� Similarly� scienti�c applications often deal with
RNA�sequences 	
�� or with multi�dimensional arrays�
Other applications that can bene�t from a more com�
prehensive approach to queries and bulk types include
geographic databases� electronic libraries� vision 	
��
molecular biology 	
��� program compilation 	��� natu�
ral language processing� and hypermedia applications�

All of the applications mentioned above can bene�t
from support for queries� however� the lack of a query
formalism that captures more complex bulk types
forces application�specialists to invent query packages
of their own that do not compose well with standard
database query languages� They often involve opera�
tors that cannot easily be decomposed into more prim�
itive components��

A better approach is to develop query languages
and query processing techniques that can be applied
to a wider universe of bulk types 	
���
��� This uni�
verse includes lists� trees� arrays� and graphs as well
as the more conventional sets and multisets� Query
optimization strategies would apply more uniformly
across all of these types� Moreover� queries on arbi�
trary compositions of these bulk types �e�g�� set	tree��
could be handled more uniformly�

In 	�
�� we introduced an object�oriented model and
a query algebra �called AQUA� for sets and multi�
sets� In this paper� we extend the AQUA query al�
gebra by introducing operators and pattern matching
primitives speci�c to lists and trees� These operators
were designed based on several criteria� consistency
with other AQUA operators� ability to express use�
ful queries� amenability to transformation�based op�

�Such splitting is crucial for any kind of query optimization�



To
 a

pp
ea

r i
n 

Pr
oc

. 1
1t

h 
In

tl.
 C

on
f. 

on
 D

at
a 

En
gg

., 
19

95

timization techniques� free composability with other
algebra operators� and extensibility� We do not as�
sume any particular user�level language� but we note
that our extensions to AQUA can model the user�level
language described in 	������ The AQUA list and tree
algebras have a small number of primitive operators
which can be used to build other useful operators�

Query operations frequently �lter out some ele�
ments of a collection type� In an ordered structure�
we want to ensure that such �ltering preserves the or�
der of the elements of a collection and does not lose
information by segmenting a list or tree� Our opera�
tors are stable in that the relative orderings between
all pairs of elements are preserved in the result�

Many database query operators take a predicate as
one of their parameters� For sets of records� predicates
based on boolean combinations of simple terms are
adequate� Predicates for bulk types like lists or trees�
must be sensitive to the inherent ordering among the
elements� Traditionally� predicates operate on single
elements of a bulk type� Our predicates account for
order by using pattern matching to examine groups
of elements from a bulk type object� These patterns
de�ne languages �sets of lists or trees� over lists and
trees� We have based our pattern language on exten�
sions to regular expressions� since the expressiveness
and tractability of regular expressions is well known�

Query algebras should be designed to facilitate op�
timizations by providing opportunities for algebraic
rewrites� Queries in our algebra can be rewritten by
decomposing the predicates into smaller pieces� The
resulting sub�pieces are frequently able to make good
use of indexes� In another paper 	��� we propose a
framework for optimizing list and tree queries� and
provide some guidelines and rules that can be used for
query rewrites�

This work is done in the context of the AQUA 	���
query algebra that has been developed jointly among
Oregon Graduate Institute� University of Wisconsin�
and Brown University as a standard input language
for query optimizers�

The remainder of the paper is organized as fol�
lows� Section 
 provides background and overview of
AQUA� Section � discusses the predicate language for
list and tree operators� For ease of presentation� we
�rst describe the tree operators in Section � followed
by some examples in Section �� In Section  we de�ne
list query operators and show how they can be viewed
as special cases of tree operators� In Section � we dis�
cuss related work and �nally in Section � we give a
summary of the paper and a brief outline of future
and ongoing work�

� Background

In this section we provide a brief overview of the
AQUA data model 	��� with special emphasis on those
aspects that apply to ordered bulk types� All enti�
ties in the AQUA model are objects� i�e� all entities
have identity and provide a set of functions which de�
�ne the protocol for the object� Since every object
has identity� issues of equality 	
�� become critical�
AQUA allows equality to be speci�ed as a parame�
ter to some of its operators �e�g�� set union�� thereby
allowing queries to use various notions of equality�

The AQUA data model consists of the following
type constructors� Set� Multiset� Tuple� Union� Func�
tion� Abstraction� List� Tree� and Graph� Each of these
types provides a collection of algebraic operators 	����
which form the basis for the algebra� One design cri�
teria for the list and tree operators was to generalize
existing operators for sets and multisets when possi�
ble� For example� AQUA�s sets can be viewed as trees
or lists with an empty edge set� The tree �list� op�
erators map to the corresponding set operators� and
relevant set operators behave the same way on trees
�lists� with empty edge sets as they do on sets�

Lists and Trees One way to view trees is as nested
list structures� but this puts the onus of maintaining
the tree structure on the user� For example� in a tree
structure� the user has to prevent two tree nodes from
pointing to the same �child� list� Viewing trees as
types in their own right allows us to use their special�
ized properties for query optimization� storage struc�
tures� and indices�

We would like to allow duplicate objects to appear
in a list or tree� but the nodes of a list or tree are a set�
which does not allow duplicates� For this reason we re�
quire the elements of a list or tree to be of type Cell�T��
A cell is an object whose only purpose is to contain
the identity of another object of the list or tree�s ac�
tual element type� This allows all the nodes to be
unique� but to potentially reference the same object�
We will use List�T� as a shorthand for List�Cell�T���
and similarly for trees� Most of the query operators
implicitly dereference the contents of the cell to get
and manipulate the object that it contains�

A list or tree� then� is a parameterized type� List�T�
or Tree�T�� and is de�ned to have a set of nodes� V
and a set �for trees� a set of lists� of directed edges�
E� Tree edges are directed away from the root� list
edges are from left to right� �Fixed�arity� trees have
constant out�degree� and �variable�arity� trees have
non�constant out�degree� We assume that trees are
ordered� that is� the children of a node appear in order



To
 a

pp
ea

r i
n 

Pr
oc

. 1
1t

h 
In

tl.
 C

on
f. 

on
 D

at
a 

En
gg

., 
19

95

from left to right�
We adopt the following notation in the rest of the

paper� L is a list� T is a tree� lp is a list predicate�
and tp is a tree predicate� Predicates are de�ned in
Section ��

A sublist of L is an embedded list of contiguous
elements� There are two kinds of substructures for
trees that are of interest� We use subgraph to mean a
connected subgraph of a tree� A subtree P of tree T is
a subgraph of T where the following condition holds�
For all nodes n in P � either all or none of n�s children
in T are in P �

We represent lists by writing the elements in se�
quence from left to right� surrounded by 	 �� So� a
list containing a� b� and c would be written as 	abc��
Trees are represented by a preorder�based notation in
which a node is followed by a parenthesized list of its
children� For example� the second tree in Figure � is
represented by b�d �f g� e��

� Predicates� Patterns� and Results

Query algebras operate by retrieving database ob�
jects that satisfy a boolean predicate� The power of a
query algebra is strongly a�ected by the power of the
predicates that can be used�

In this section� we present a language for describ�
ing relationships between the elements of ordered data
types like lists and trees� Instead of returning individ�
ual objects that satisfy a boolean predicate� our alge�
bra returns pieces of ordered structures which match
a particular pattern�

��� Predicates and pattern alphabets

Operators in the AQUA list and tree algebra use a
pattern to describe the objects of interest� A pattern
de�nes a language� a set of lists or trees� Pattern pred�
icates are written in a language that is an extension
of regular expressions�

The alphabet for the list and tree predicates is de�
�ned by a set of alphabet�predicates� An alphabet�
predicate is a unary boolean function which is applied
to an object� Each alphabet predicate is satis�ed by
a �nite number of objects in the database� An object
matches an alphabet�predicate if the object satis�es
it�

Alphabet�predicates are written as parenthesized
lambda expressions� so ���Person� Person�age � 
��
is an alphabet�predicate that should be applied to an
object of type Person� In a pattern this predicate will
match any Person object whose age is � 
��

In order to limit the complexity of list and tree
queries� we only allow alphabet�predicates to be con�
structed from values of stored attributes of objects��
constants� comparison operations� and the boolean op�
erators AND� OR� and NOT� These constraints ensure
that any alphabet�predicate can be evaluated in con�
stant time�

��� List patterns

AQUA list patterns are derived from regular ex�
pressions� and provide the operations concatenation
���� Kleene closure ���� and disjunction �j�� We de�ne
a list pattern lp inductively� In the base cases� lp is
an alphabet�predicate or the metacharacter � �which
is always TRUE�� The inductive cases follow� A list
pattern can be de�ned as a union of two list patterns
�lp� j lp�� or as a concatenation of two list patterns
�lp� � lp��� In most cases� the � symbol is omitted� It�
erative self�concatenation �Kleene closure� is denoted
as lp� �zero or more times� or lp� �one or more times��
A more formal description of a list pattern lp is�

lp ��� 	ilp� j 		lp ��

ilp ��� alphabet�predicate j � j ilp� j ilp�

j 		ilp �� j lp � lp j lp �j� lp

We allow the use of 		 �� to show grouping and to im�
prove readability� The metacharacters � and � �writ�
ten as �lp and lp�� indicate that lp must match at the
beginning or the end of the list respectively�

Figure �� Using concatenation points in tree patterns

��� Tree patterns

We use a regular expression�like language for de�
scribing patterns for trees� Most of the operations
for regular expressions generalize nicely to trees� with
the exception of concatenation and operators derived
from it �like Kleene closure�� The di�culty arises be�
cause it is not clear where concatenation should take
place� Our solution to this di�culty is to adopt the

�This cannot be determined by the user	 since it would be

a violation of encapsulation� However	 the query optimizer can

verify that the attributes involved are stored and not computed�



To
 a

pp
ea

r i
n 

Pr
oc

. 1
1t

h 
In

tl.
 C

on
f. 

on
 D

at
a 

En
gg

., 
19

95

notion of concatenation points 	���� which are used
to specify where the concatenation should occur� We
allow multiple concatenation points to appear in our
patterns� A single concatenation point is usually de�
noted by the Greek letter �� and multiple concate�
nation points are denoted by subscripted versions of
�� such as ��� ��� ����n � We also require concatena�
tion and its derived operators to be parameterized by
a concatenation point �e�g� ���� so that the correct
behavior is observed in the presence of multiple con�
catenation points�

Concatenating tree pattern tp� with tp� using con�
catenation point �� is written as tp� ���

tp�� For ex�
ample� Figure � shows how the pattern a�b�d�f g�e�c�
can be written as the concatenation 		a��� ��� ���

		b�d�f g�e����� ���
c�

Similarly� the iterative self concatenation opera�
tions � are subscripted� giving tp��� and tp��� for zero
or more and one or more self concatenations respec�
tively� If two trees are concatenated with a concate�
nation point �� and there is no �� in the �rst tree� the
result is just the �rst tree� As with lists� the last it�
eration of an iterative self concatenation concatenates
NULL to the appropriate concatenation points� As
an example of iterative self concatenation� take the
pattern 		a�b c ������ � Four elements in the language
de�ned by this pattern are shown in Figure 
�

Figure 
� Self Concatenation in trees

Tree patterns provide the operations of concatena�
tion ����� Kleene closure ����� and disjunction �j�� As
with lists� tree patterns can be de�ned inductively� In
the base cases� a tree pattern tp is either a� a sin�
gle node tree� represented by an alphabet�predicate�
�� or a concatenation point or b� the root of a tree�
represented by an alphabet�predicate� or �� followed
by a parenthesized list of tree patterns for the list of
children�

A more formal description of a tree pattern tp and a
tree list pattern �list of children� tlp is�

�The inclusion of these operations means that some tree

queries will be exponential� The performance of many such

queries can be improved using our optimizations�

tp ��� alphabet�predicate j � j � j 		tp �� j
alphabet�predicate � tlp � j � � tlp � j
tp �� tp j tp�� j tp�� j tp �j� tp

tlp ��� tp j tlp � tlp j tlp� j tlp� j
tlp �j� tlp j 		tlp ��

As an analog with list patterns� the tree pattern �tp
matches only when tp is at the root of the tree and
tp� matches only when all leaves of tp match leaves
of the tree� For example� both � b�d e� and b�d e��
match the subtree b�d e� in the second tree in Figure
� and only b�d e�� matches the subtree b�d e� in the
fourth tree� We also use 		 �� for grouping�

Since we use the list language to specify the children
of any node� we can have trees in which nodes may
have a nonuniform and arbitrary number of children�

��� Matching and Return Results

The result of a list or tree query operation is a new
list or tree which contains the appropriate objects from
the original list or tree� The use of patterns in list and
tree queries can be viewed as a two step process� The
�rst step is matching the pattern against the input�
and the second step is determining what to return�

The alphabet for list and tree patterns is alpha�
bet predicates� but the alphabet for lists and trees in
the database is objects� In order to match list and
tree patterns to database objects� the patterns and
the objects they are matched against must have the
same alphabet� We can transform a pattern P into
P � as follows� eliminate the alphabet predicates from
P by replacing each alphabet predicate ap in P with
the regular expression �x�jx�j � � � jxn�� where x��� � � �xn
are the objects in the database that satisfy ap� Now
the pattern and the match candidates have the same
alphabet� Given an input list �or tree� L� a sublist
�or subtree� I of L matches a pattern P if I is in the
language described by P �� I is called an instance of
P �

After a pattern is matched� the instance matching
the pattern is �returned�� In some situations� only a
portion of the matching instance is of interest� So� we
provide the  metacharacter as a pre�x to a subpattern
P to specify that the largest subtree rooted at the node
matching P �s root be pruned from the result� For an
example see the de�nition of sub select in Section ��

��� NULLs and Concatenation Points

If we view trees and lists as recursively de�ned
types� then we recognize that all leaf nodes in a tree
and the last list node have NULLs for children� We



To
 a

pp
ea

r i
n 

Pr
oc

. 1
1t

h 
In

tl.
 C

on
f. 

on
 D

at
a 

En
gg

., 
19

95

extend this notion �adapted from list and tree pat�
terns� to allow concatenation points to appear in lists
and trees� When a concatenation point symbol ap�
pears in a list or tree� it is treated as a labeled NULL�
The only operation which is able to tell that such a
NULL is present in a list or tree is the concatenation
operator ��� ���� which examines the NULL�s label to
determine the applicability of the concatenation� This
facilitates the use of our split operator�

� Tree Operators

In this section we brie!y describe some of the im�
portant tree query operators� AQUA also provides a
range of other operators for purposes like navigating�
updating� and providing structural information about
a tree instance� These operators are not discussed in
this paper�

Query operators The tree query operators can be
classi�ed into two sub�categories " those common to
all bulk types �e�g� sets� bags� and operators that
are speci�c to ordered bulk types� Select and ap�

ply belong to the former category while sub select�
all desc� all anc� and split belong to the latter cat�
egory�

To illustrate the behavior of the operators we use
a simple example of a family tree �Figure ��� Sec�
tion � gives a more intricate example of trees and tree
operators� Consider a family tree containing the de�
scendants of a famous person� Each node represents a
person object with a large number of attributes� How�
ever� in our example we only list the name� citizenship�
eye color� and education attributes for each person in
the tree� Each edge stands for the relationship �a child
of� and a path in the tree stands for the relationship �a
descendant of�� In the rest of this section we describe
the operators and how they work on the example tree�
Select and apply are derived from the respective

set#bag operators in AQUA� However� since they op�
erate on ordered types� the nodes of the result tree
maintain the same relative order as the nodes in the
input tree T � Assume T is of type Type�S��

� Select�p��T �� selects all nodes of T that sat�
isfy the predicate p � S � Bool� Here p is an
alphabet�predicate which is applied to each node�
If two nodes n� and n� satisfy p� n� is an an�
cestor of n� in the result tree�s� if and only if
n� is an ancestor of n� in T � If no nodes in the
path between n� and n� �excluding n�� n�� in T �
satisfy p then there is an edge �n�� n�� in the re�
sult� So� select produces a set of trees with all

Figure �� A Family Tree T

the �predicate�satisfying� nodes and all the edges
produced using the above guideline� The result
set will contain only one tree if the root node of
T satis�es p else it will contain a forest containing
trees rooted at nodes r� ��� rn that satisfy p �and
no ancestor of ri in T satis�es p��

� Apply�f��T �� applies function f � S � U to
all the nodes of T � and constructs a tree of type
Tree�U� isomorphic to T � containing the corre�
sponding results�

The second category of operators also allows us to
specify the relative order of the input nodes that sat�
isfy the predicate� Most of the operators take a tree
pattern tp and �nd the matching instances for tp in
T � Figure � speci�es a matching instance �or match�
for tp � �Mat� � 	 �Ed�
 from tree T in Figure ��
The operator being used determines what is returned�
For example� after matching� the sub select opera�
tor returns the subgraphs of T that match tp whereas
all anc and all desc return the matching subgraphs
along with their ancestors and descendants respec�
tively� These last two operators are very useful for
describing where the match occurs in algebraic terms�

� Split�tp� f��T �� For each match of tp in T � split
creates three intermediate results� A tree corre�
sponding to all ancestors of the match and their
descendants �except the match itself�� the match�
and a list of all trees descended from the match�
For each match� split applies a function f to this
��tuple and returns a set containing the results of
f for each match� To illustrate how split works
consider the following example� Suppose we wish
to split the tree T on the basis of the pattern �par�
ent is Brazilian� one child is American�� Using the



To
 a

pp
ea

r i
n 

Pr
oc

. 1
1t

h 
In

tl.
 C

on
f. 

on
 D

at
a 

En
gg

., 
19

95

shorthand �Brazil� to stand for ��p� p�citizen �
�Brazil�� �USA� for ��p� p�citizen � �USA�� and
h i to indicate tuple formation� we can write the
query as�

split�Brazil� �� USA  ���� ��x� y� z�hx� y� zi��T �

The result of this query is a set containing one
tuple with three pieces as shown in Figure �� The
concatenation point � indicates where the match
is attached to the rest of the tree �the ancestors��
The �� and �� indicate where the match�s descen�
dants are attached� Note that �� corresponds to a
subtree pruned using  �� and that �� corresponds
to a subtree pruned because it was actually a de�
scendant of the match�

Figure �� Result of split�Brazil�  �� USA  ��
�
��x� y� z�hx� y� zi��T �

Formally� split can be de�ned as�

split�tp� f��T � � ff�x� y� 	t�� t�� ���� tn�� j

�x �� y ���
t� ���

��� ��n tn � T �

��x ��i q � x� for i � �� 
��� n and any tree q�

��y ���
nil ���

nil ���
��� ��n nil � L�tp��

��y contains all�i� � 	 i 	 n�g

The split operator is unique in that it allows us to
break up a tree and put it back together later� Pro�
viding an operator to �break� up the tree around a
speci�c pattern allows us to optimize some queries by
transforming them into a split on a pattern that is in�
expensive to �nd and to apply simpler queries to the
pieces �an example is presented in Section ���

� Sub select�tp��T �� returns the set of subgraphs
of T that match pattern tp�

sub select�tp��T � �

split�tp� ��a� b� c� b ���������n 	 ���T �

The operation b ����������n 	 � is a shorthand for
concatenating ��� ��� ���� �n to NULL�

� All anc�tp� f��T �� can be expressed using split

" it returns the result of function f applied to the
match and all the ancestors of the match� For�
mally� all anc is de�ned as�

all anc�tp� f��T � � apply���a� f���a�� 
�a����A�

where A � split�tp� g�a� b� c���T � and

g�a� b� c� � ��a� b� c�ha� �b ����������n 	 ��i

� All desc�tp� f��T �� can also be de�ned in terms
of split� It returns the result of the function f

applied to the match and its descendants�

all desc�tp� f��T � � apply���a� f���a�� 
�a����A�

where A � split�tp� g�a� b� c���T �

and g�a� b� c� � ��a� b� c�hb� ci

Why Split� Split is a very powerful operator� It
can be used to construct all of the other matching
operators� Additionally� split may be viewed as an
order�preserving analog for fold 	��� that is based on
pattern matching� Split also allows us to preserve the
context of the match� One might ask� though� what is
the use of retaining the context� While there are cases
in which users might want to see this in the result� we
feel that the primary motivation is in optimization�

While a complete treatment of this topic is beyond
the scope of this paper� the basic idea is simple� In
relational optimization� a select with a complex con�
junctive predicate might be rewritten as an intersec�
tion of two or more selects� each containing a di�erent
conjunct �or set of conjuncts� from the original� In
this way a complex predicate is broken into simpler
pieces some of which might be very cheap to process
�e�g�� by using an index��

We mirror this technique with sub select in trees�
by using the split operator to produce simpler
sub selects� Thus the query sub select�d�e�h i�j��
�T � can be rewritten as�

apply�sub select��d�e�h i�j���

�split�d� ��x� y� z� y ������
z��T ��

Assume that we can use an index to e�ciently lo�
cate all nodes in T that match d� The intuition is



To
 a

pp
ea

r i
n 

Pr
oc

. 1
1t

h 
In

tl.
 C

on
f. 

on
 D

at
a 

En
gg

., 
19

95

that the split operator uses the index on d to pick
all the subtrees of T that are rooted at d� This dras�
tically narrows the search space for the subsequent
sub select since the pattern can occur only at the
root of each tree in the result set of split� So� ap�
plying sub select to the result of split produces the
answer to our original query more e�ciently�

As described above� AQUA has a large number of
query operators which have been chosen for their use�
fulness and succinctness� however they can all be ex�
pressed in terms of a smaller subset of primitive oper�
ators� The primitive tree query operators are apply
and split 	����

� More Tree Queries

In order to demonstrate the use and power of the al�
gebra� we consider a slightly more complex example�
Consider a parse tree T of a database query� Each
node stands for an algebra operator and the children
of a node are the inputs to the operator �Figure ��� We
can specify compile time optimizations on T using our
tree operators� This suggests that our tree query lan�
guage would be useful in constructing a rewrite based
optimizer�

Figure �� A parse tree

The parse tree is of type Tree�Parse�tree�node�where a
Parse�tree�node supports the method OpName which
returns a string that is the name of the query operator�

Suppose we wish to �optimize� the query repre�
sented by this parse tree T and the rule that we wish
to use is�

select�R� and�p�� p��� 
 select�select�R� p��� p��

The �rst step is to �nd all the places where the
subtree select�R� and�p�� p��� occurs with its con�
text� The second step is an update operation where
we need to replace this portion of the tree with
select�select�R� p��� p�� �which is why we need the
context��

The �rst query is split�select� � and�� f��T �� Here
we use �select� as a shorthand for the predicate ��pn�
pn�OpName � �select� and �and� for the predicate
��pn� pn�OpName � �and�� This returns a set of
matches where the pattern occurs� In order to mod�
ify the parse tree� we need to specify an appropriate
function f which will create a new parse tree

f�x� y� z� � x �� �tree� A�A�B D�E�� where

y � A�B C�D E��� ���������
z

The update function f is a three�place function that
operates on the three pieces that split produces� The
�rst two pieces are subtrees� while the third compo�
nent �z� is a list of subtrees� The operation y���������

z

is a shorthand for writing y���
z����

z����
z� where zi

refers to the ith element of the list z� Operator tree
creates a new tree and � is a shorthand for specifying
that y is of the form A�B C�D E�� where A���E are
bound to nodes of the tree�

Now let us consider querying over trees with
variable�arity nodes� An example of such a tree is
a parse tree for a C program� One simple optimiza�
tion over such a parse tree might be to �nd out if any
printf �which is a variable�arity function� refers to a
particular data structure LargeData at least twice so
that we could cache the data structure appropriately�
In this query we do not know a priori the arity of
the printf node� So we need to use the notation for
variable arity trees to express the query�

sub select�printf��� LargeData ��LargeData �����T �

The query returns all occurrences of printf that refer
to at least two occurrences of LargeData� along with
all of its other parameters�

� List Operators

Ignoring typing issues for the moment� we can view
a list as a tree in which each tree�node has at most
one child� Let�s call such trees list�like trees� As a
result� list operators translate to the corresponding
tree operators applied to list�like trees�

We divide list query operators into two categories�
similar to the categories for the tree query operators�
Consider the �rst category of operators " select and
apply� Select selects all the nodes that satisfy the
predicate p from the tree TL� where TL is a list�like
tree� This operation would return a singleton set with
a tree containing nodes that satisfy p� Each of the
nodes of the resulting tree will have at most one child�
The result is the same as in the case where the type



To
 a

pp
ea

r i
n 

Pr
oc

. 1
1t

h 
In

tl.
 C

on
f. 

on
 D

at
a 

En
gg

., 
19

95

of TL is a list and the output type is also a list� We
can easily see that list apply is the same as the tree
operator apply�

The next category of operators � sub select�
all anc� all desc� and split take as input a list predi�
cate� These operators are similar to the tree operators
assuming we restrict their input to list�like trees� How�
ever� there are some di�erences in notation between
list and tree predicates� So� before we demonstrate
the mapping between list operators and their corre�
sponding tree operators� we need to address the issue
of di�erent notations used for specifying patterns in
lists and trees�

The list pattern 	abc� corresponds to the tree pat�
tern a�b�c��� This di�erence in notation is due to the
fact that trees normally have multiple children and
the use of � � allows us to establish the hierarchy be�
tween the nodes of the tree� Now we show the map�
ping between the tree�predicate language and the list
predicate language� The list and tree disjunction oper�
ators �j� are identical� The concatenation ���� and the
Kleene closure ���� operators in trees are parameter�
ized by concatenation points� However� list�like trees
can have a concatenation point only at the leaf since
the nodes can have at most one child� So� 	abc� � 	cba�
in list notation translates to a�b�c����� �� c�b�a�� in
tree notation� where � is a concatenation point sym�
bol� Kleene closure over lists is slightly di�erent since
we can �pump� any node �or sublist� of a tree� As a
result we have to view the list 	d		ac���b� as a concate�
nation of three sublists� i�e� 	d� � 	ac�� � 	b�� Now
translating this into tree notation� we can write the
pattern as d���� ���

a�c�������� ���
b�

Using the above translation from list predicates to
tree predicates� we can map all list operators onto
tree operators� Sub select�lp��L� returns the set
of sublists of L that match pattern lp� Other op�
erators like all anc�lp� f��L�� all desc�lp� f��L�� and
split�lp� f��L� are also similar to their corresponding
tree operators except for their input and return types
�which are lists�� Formal de�nitions of these operators
are given in 	����

To illustrate the behavior of these operators let us
consider a very simple example of a music database�
The database consists of a large number of songs�
where each song is represented as a list consisting of
nodes that represent a note� Each note has a few prop�
erties like pitch �e�g�� A� B� C� etc�� and duration�
Now suppose we wish to �nd a simple melody �e�g�
	A��F � � in a particular song L where A stands for
��n� n�pitch � �A�� F is ��pn� n�pitch � �F�� and
� is a note with any pitch� The corresponding query

would be sub select�	A��F ���L�� This would return
a set containing all such phrases in L� Now suppose
we need to �nd the melody and the context in which
it occurs � if we want the notes preceding the melody
our query would be

all anc�	A��F �� ��x� y�hx� yi��L�

This returns a set of tuples� one for each match found�
The �rst �eld of the tuple returns the sublist from the
beginning of the song up to the starting position of the
melody� the second �eld returns the melody� All desc
and split would work similarly�

The primitive query operator for lists is split and
all other query operators can be expressed in terms of
it 	����

� Related Work

In this section we discuss related work in the area of
algebra and data model support for lists and trees� fol�
lowed by a discussion of work in the area of predicate
languages for these types�

��� Ordered Types in Other Data Models

Much of the previous work with ordering deals with
order as in sequences or arrays� There are some papers
that address other types like trees 	
��� and graphs
	���� However� most of the previous work deals with
ordered types in a piecemeal fashion � our work is
unique in that it takes a holistic approach to bulk
types� including a richer notion of pattern matching�

The operations described in 	
� are intended to be
applicable to any bulk type� not just to lists and trees�
As a result� operations like selecting a sublist are not
provided�

MDM 	
�� presents a query algebra to support lists
in an object�oriented data model� The salient feature
of their algebra is the extension of the predicate lan�
guage to allow position�dependent queries� However�
their predicate language for lists is not as versatile as
regular expressions since predicates are applied to each
element of the list rather than the list as a whole�

The NST algebra 	��� is speci�cally designed for
structured o�ce documents and is an extension of re�
lational algebra� It tries to maintain the order of the
input lists whenever possible� with a higher preference
for the order of the �rst input list� As a result� most of
the operators are not commutative� A tree�like struc�
ture in a document �paragraphs under sections� is han�
dled by treating it as a nested sequence of sequences�
The predicate language is limited in its power � for
example� it cannot be used to extract sublists�



To
 a

pp
ea

r i
n 

Pr
oc

. 1
1t

h 
In

tl.
 C

on
f. 

on
 D

at
a 

En
gg

., 
19

95

Rs�operations 	��� are sequence operations that are
based on pattern matching� Ginsburg and Wang de�
�ne a set of powerful operations based on regular ex�
pressions that act as a kind of template for the op�
eration� i�e�� the regular expressions de�ne what the
operation should do �by example�� However� they do
not mention how these operations can be extended to
trees or specify how these operations �t into a query
optimization scheme�

The EXTRA#EXCESS system 	��� contains an ar�
ray type constructor and various operations on arrays�
The elements of an array are accessed using their array
indices� However� the system provides no support for
lists �as opposed to arrays�� trees or pattern�matching
predicates�

Several authors 	�
��� have addressed the issue of
handling tree�structured data� especially in the form
of hierarchical tree structures �speci�cally in text�
dominated databases�� The database is described by
a schema expressed as a grammar and the operators
manipulate data expressed in the form of �production
rules�� Each schema� represented by a tree� de�nes an
�isa� relationship between the parent node and the
child nodes� These papers� however� do not address
the issue of more general trees�

An algebra for queries on sequences is presented
in 	
��� but this algebra does not address pattern�
matching �its predicates are applied to one node at a
time�� All of the operators result in a single sequence�

Recent work 	����� on approximate tree matching
discusses tree algebras targeted towards problems in
vision and molecular biology� These papers propose
various distance metrics for trees� These metrics are
useful in answering queries such as �give me all the
subtrees of T which almost satisfy pattern P�� Such
metrics are easily accommodated in our formalisms�
The authors also present various optimizations for
distance�based queries with associated indices that can
be expressed by query transformations in the AQUA
algebra� Approximate subsequence matching for lists
is addressed in 	��� but only �xed�length patterns are
allowed �no regular expressions��

Many commercial systems �e�g� ObjectStore 	
���
claim to support queries on lists� but these are simply
the same queries that can be asked of sets� the ordering
properties of lists are not taken into account in either
the predicate language or in the result of the query�

��� Predicates for List and Tree Queries

A model and language for sequences of events is
presented in 	���� Their pattern language is equivalent
to regular expressions� but the result of any query is a

single sequence� restricting the set of allowable queries�
Query optimizations such as ours are not addressed�

A powerful pattern language for strings �but not
trees� is described in 	���� This language is context�
sensitive and thus more powerful than ours� but no
attention is given to �tting it into an object�oriented
context or into a query optimization scheme� It ex�
tends the relational algebra select by allowing �lters
based on multitape automata�

Our work on list and tree predicate languages is
based on earlier work on regular expressions for lists
and trees 	���
��
������

The predicate language for lists is based on regular
expressions for strings� Our notation for trees is an
amalgamation and extension of ideas �rst presented
in 	����� We have augmented the tree language to
handle trees with variable arity� to distinguish speci�c
nodes like the leaves� etc� We have also integrated the
behavior of these predicate languages with our oper�
ator domain� to allow users to specify sophisticated
queries over lists and trees�

Another potential candidate for the predicate spec�
i�cation language was graph grammars 	���� as they
allow us to express �graph rewrites� in a succinct man�
ner� However� the result of a graph grammar deriva�
tion is dependent on the order in which the produc�
tions are applied� The �order� dependence makes it
very hard� if not impossible� to optimize queries by
splitting or decomposing the pattern into �simpler�
pieces� since the results may vary depending on the
order in which the results of the simpler queries are
combined� Another problem with graph grammars is
the complexity of the notation� A predicate language
based on regular expressions� however� is tractable and
provides us with su�cient querying capabilities�

	 Summary and Work in Progress

We have described the list and tree algebras for the
AQUA object�oriented query algebra� The operators
in the algebra preserve the ordering of nodes in the
original list or tree� The primitive query operator for
lists is split and the primitive query operators for trees
are apply and split� Our use of patterns based on ex�
tended regular expressions allows us to write queries
that are sensitive to the order of the elements in the
list or tree� Regular expressions are familiar� powerful�
and well suited to a number of application domains�
We brie!y demonstrated how algebraic decomposition
techniques can be used to optimize queries on lists and
trees� A companion paper 	��� treats the problem of
optimization in more detail� There we present opti�



To
 a

pp
ea

r i
n 

Pr
oc

. 1
1t

h 
In

tl.
 C

on
f. 

on
 D

at
a 

En
gg

., 
19

95

mization rules and access methods for ordered data
types�

As part of our research on AQUA� we have devel�
oped a mapping for the ODMG set and bag algebra
	�� to the AQUA set and multiset algebra� The ar�
ray type in the ODMG speci�cation is similar to our
notion of list� and we believe that we will have little
di�culty simulating the ODMG arrays with AQUA
lists� Our view of predicates� however� is signi�cantly
more powerful�

We are currently developing a cost model and in�
corporating the list and tree algebras into the EPOQ
extensible query optimizer 	

� being developed at
Brown University�

Acknowledgements

We would like to thank Catriel Beeri� Mitch Cherni�
ack� Darryn Lavery� Gail Mitchell� Arnold Rosenberg�
Dennis Shasha� Hagit Shatkay� Sairam Subramanian�
Bennet Vance� and Jason Wang for useful discussions�

References

��� A� V� Aho� M� Ganapathi� and S� W� K� Tjiang� 	Code Gener

ation using Tree Matching and Dynamic Programming�� ACM
Trans� on Programming Languages and Systems �� �����
�������

��� C� Beeri and Y� Kornatzky� 	Algebraic Optimization of
Object
Oriented Query Languages�� Proc� ICDT ����� ���
���

��� C� Beeri and P� Ta
Shma� 	Bulk Data Types� A Theoretical
Approach�� Proc� DBPL ����� �����

��� J� A� Brzozowski� 	Derivatives of regular expressions�� J�

ACM �� ������ �������

��� R� G� G� Cattell� ed�� The Object Database Standard� ODMG�

��� Release ��� � MorganKaufmann Publishers� San Francisco�
���

��� J� Doner� 	Tree Acceptors and Some of their Applications��
J� of Computer and System Sciences � ������ ��������

��� H� Ehrig� H� 
J� Kreowski� and G� Rozenberg� eds�� Graph
Grammars and Their Applications to Computer Science

����� Springer
Verlag� ���

��� J� Engelfriet and G� Rozenberg� 	Graph Grammars based on
node rewriting� An Introduction to NLC Graph Grammars ��
Proc� �th Intl� on Graph Grammars and Their Applications

to Computer Science �������� ������

�� C� Faloutsos� M� Ranganathan� and Y� Manolopoulos� 	Fast
Subsequence Matching in Time
Series Databases�� Proc�

SIGMOD ����� ������

���� N� H� Gehani� H� V� Jagadish� and O� Shumueli� 	Compos

ite Event Speci�cation in Active Databases�� Proc� VLDB

����� ��������

���� S� Ginsburg and X� Wang� 	Pattern Matching by Rs
Opera

tions� Towards a Uni�ed Approach to Querying Sequenced
Data�� Proc� PODS ����� �������

���� G� H� Gonnet and F� W� Tompa� 	Mind Your Grammar� a New
Approach to Modelling Text�� Proc� VLDB ������ �������

���� G� Grahne� M� Nyk�anen� and E� Ukkonen� 	Reasoning about
Strings in Datbases�� Proc� PODS ����� ��������

���� R� H� G�uting� 	GraphDB� A Data Model and Query Language
for Graphs in Databases�� Proc� VLDB �����

���� R� H� G�uting� R� Zicari� and D� M� Choy� 	An Algebra for
Structured O�ce Documents�� ACM Trans� on O	ce Info�

Systems � ����� ��������

���� M� Gyssens� J� Paredaens� and D� V� Gucht� 	A Grammar

Based Approach Towards Unifying Hierarchical Data Models��
Proc� SIGMOD ����� ��������

���� C� M� Ho�mann and M� J� O�Donnell� 	Pattern Matching in
Trees�� J� ACM � ������ �����

���� R� Karp� R� Miller� and A� Rosenberg� 	Rapid Identi�cation
of Repeated Patterns in Strings� Trees� and Arrays�� Proc�

STOC ������ ��������

��� T� W� Leung� G� Mitchell� B� Subramanian� B� Vance� S� L�
Vandenberg� and S� B� Zdonik� 	The AQUA Data Model and
Algebra�� Proc� DBPL ����� ��������

���� D� Maier and B� Vance� 	A Call to Order�� Proc� PODS

����� �����

���� R� McNaughton and H� Yamada� 	Regular expressions and
state graphs for automata�� IEEE Trans� on Electronic Com�

puters  ������ �����

���� G� Mitchell� U� Dayal� and S� B� Zdonik� 	Control of an Exten

sible Query Optimizer� A Planning
Based Approach �� Proc�

VLDB ����� ��������

���� J� Orenstein� S� Haradhvala� B� Margulies� and D� Sakahara�
	Query Processing in the ObjectStore Database System��
Proc� SIGMOD ����� ��������

���� J� Richardson� 	Supporting Lists in a Data Model �A Timely
Approach��� Proc� VLDB �����

���� A� Salomaa� 	Two complete axiom systems for the algebra of
regular events�� J� ACM �������� �������

���� H� Samet� 	Distance Transform for Images represented by
Quadtrees�� IEEE Trans� on Pattern Analysis and Machine

Intelligence � ������ �������

���� P� Seshadri� M� Livny� and R� Ramakrishnan� 	Sequence
Query Processing�� Proc� SIGMOD ����� ��������

���� B� A� Shapiro and K� Zhang� 	Comparing Multiple RNA Sec

ondary Structures using Tree Comparisions�� Comput� Appl�

Biosci� � ����� �������

��� G� M� Shaw and S� B� Zdonik� 	Object
Oriented Queries�
Equivalence and Optimization�� Proc� �st Intl� Conf� on De�

ductive and Object�Oriented Databases ����� ��������

���� B� Subramanian� T� W� Leung� S� L� Vandenberg� and S� B�
Zdonik� 	The AQUA Approach to Querying Lists and Trees in
Object
Oriented Databases�� Brown Univ�� Dept� of CS� Tech�
Report� Providence� RI ����
���� ���

���� B� Subramanian� T� W� Leung� S� L� Vandenberg� and S� B�
Zdonik� 	Optimization of List and Tree Queries in AQUA��
Brown Univ�� Dept� of CS� Tech� Report� Providence� RI
����
���� ���

���� B� Subramanian� S� B� Zdonik� T� W� Leung� and S� L� Van

denberg� 	Ordered Types in the AQUA Data Model�� Proc�

DBPL ����� ��������

���� J� W� Thatcher and J� B� Wright� 	Generalized Finite Au

tomata Theory with an Application to a Decision Problem
of Second
Order Logic�� Mathematical Systems Theory �
������ ������

���� S� L� Vandenberg and D� J� DeWitt� 	Algebraic Support for
Complex Objects with Arrays� Identity� and Inheritance��
Proc� SIGMOD ����� ��������

���� T
L� Wang and D� Shasha� 	Query Processing for Distance
Metrics�� Proc� VLDB ����� ��������

���� K� Zhang� D� Shasha� and J� T� L� Wang� 	Approximate Tree
Matching in the Presence of Variable Length Don�t Cares��
J� of Algorithms �� �����



To
 a

pp
ea

r i
n 

Pr
oc

. 1
1t

h 
In

tl.
 C

on
f. 

on
 D

at
a 

En
gg

., 
19

95


