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Abstract

Relational database systems and most object-
oriented database systems provide support for queries.
Usually these queries represent retrievals over sets or
multisets. Many new applications for databases, such
as multimedia systems and digital libraries, need sup-
port for queries on compler bulk types such as lists
and trees. In this paper we describe an object-oriented
query algebra for lists and trees. The operators in the
algebra preserve the ordering between the elements of a
list or tree, even when the result list or tree contains an
arbitrary set of nodes from the original tree. We also
present predicate languages for lists and trees which
allow order-sensitive queries because they use pattern
matching to examine groups of list or tree nodes rather
than individual nodes. The ability to decompose pred-
tcate patterns enables optimizations that make use of
wndices.

1 Introduction

Database query languages have primarily focused
on sets (and sometimes multisets) while in this paper
we enhance them to include lists and trees. Computer
applications are becoming more sophisticated and re-
quire higher-level support for managing complex data.
Many advanced application areas stress the bound-
aries of current database querying technology and re-
quire query support over bulk types more complex
than sets and multisets. For example, multi-media
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systems must manage many different data types, such
as text, video, and audio. Here, a document can be
viewed as a tree of document components; a video is
a sequence of frames; a sound-track is a sequence of
tones. Similarly, scientific applications often deal with
RN A-sequences [28] or with multi-dimensional arrays.
Other applications that can benefit from a more com-
prehensive approach to queries and bulk types include
geographic databases; electronic libraries, vision [26],
molecular biology [28], program compilation [1], natu-
ral language processing, and hypermedia applications.

All of the applications mentioned above can benefit
from support for queries; however, the lack of a query
formalism that captures more complex bulk types
forces application-specialists to invent query packages
of their own that do not compose well with standard
database query languages. They often involve opera-
tors that cannot easily be decomposed into more prim-
itive components'.

A better approach is to develop query languages
and query processing techniques that can be applied
to a wider universe of bulk types [2,3,20]. This uni-
verse includes lists, trees, arrays, and graphs as well
as the more conventional sets and multisets. Query
optimization strategies would apply more uniformly
across all of these types. Moreover, queries on arbi-
trary compositions of these bulk types (e.g., set[tree])
could be handled more uniformly.

In [32], we introduced an object-oriented model and
a query algebra (called AQUA) for sets and multi-
sets. In this paper, we extend the AQUA query al-
gebra by introducing operators and pattern matching
primitives specific to lists and trees. These operators
were designed based on several criteria: consistency
with other AQUA operators, ability to express use-
ful queries, amenability to transformation-based op-

1Such splitting is crucial for any kind of query optimization.



timization techniques, free composability with other
algebra operators, and extensibility. We do not as-
sume any particular user-level language, but we note
that our extensions to AQUA can model the user-level
language described in [35,36]. The AQUA list and tree
algebras have a small number of primitive operators
which can be used to build other useful operators.

Query operations frequently filter out some ele-
ments of a collection type. In an ordered structure,
we want to ensure that such filtering preserves the or-
der of the elements of a collection and does not lose
information by segmenting a list or tree. Our opera-
tors are stable in that the relative orderings between
all pairs of elements are preserved in the result.

Many database query operators take a predicate as
one of their parameters. For sets of records, predicates
based on boolean combinations of simple terms are
adequate. Predicates for bulk types like lists or trees,
must be sensitive to the inherent ordering among the
elements. Traditionally, predicates operate on single
elements of a bulk type. Our predicates account for
order by using pattern matching to examine groups
of elements from a bulk type object. These patterns
define languages (sets of lists or trees) over lists and
trees. We have based our pattern language on exten-
sions to regular expressions, since the expressiveness
and tractability of regular expressions is well known.

Query algebras should be designed to facilitate op-
timizations by providing opportunities for algebraic
rewrites. Queries in our algebra can be rewritten by
decomposing the predicates into smaller pieces. The
resulting sub-pieces are frequently able to make good
use of indexes. In another paper [31] we propose a
framework for optimizing list and tree queries, and
provide some guidelines and rules that can be used for
query rewrites.

This work is done in the context of the AQUA [19]
query algebra that has been developed jointly among
Oregon Graduate Institute, University of Wisconsin,
and Brown University as a standard input language
for query optimizers.

The remainder of the paper is organized as fol-
lows. Section 2 provides background and overview of
AQUA. Section 3 discusses the predicate language for
list and tree operators. For ease of presentation, we
first describe the tree operators in Section 4 followed
by some examples in Section 5. In Section 6 we define
list query operators and show how they can be viewed
as special cases of tree operators. In Section 7 we dis-
cuss related work and finally in Section 8 we give a
summary of the paper and a brief outline of future
and ongoing work.

2 Background

In this section we provide a brief overview of the
AQUA data model [19] with special emphasis on those
aspects that apply to ordered bulk types. All enti-
ties in the AQUA model are objects, i.e. all entities
have identity and provide a set of functions which de-
fine the protocol for the object. Since every object
has identity, issues of equality [29] become critical.
AQUA allows equality to be specified as a parame-
ter to some of its operators (e.g., set union), thereby
allowing queries to use various notions of equality.

The AQUA data model consists of the following
type constructors: Set, Multiset, Tuple, Unton, Func-
tion, Abstraction, List, Tree, and Graph. Each of these
types provides a collection of algebraic operators [19],
which form the basis for the algebra. One design cri-
teria for the list and tree operators was to generalize
existing operators for sets and multisets when possi-
ble. For example, AQUA’s sets can be viewed as trees
or lists with an empty edge set. The tree (list) op-
erators map to the corresponding set operators, and
relevant set operators behave the same way on trees
(lists) with empty edge sets as they do on sets.

Lists and Trees One way to view trees is as nested
list structures, but this puts the onus of maintaining
the tree structure on the user. For example, in a tree
structure, the user has to prevent two tree nodes from
pointing to the same “child” list. Viewing trees as
types in their own right allows us to use their special-
ized properties for query optimization, storage struc-
tures, and indices.

We would like to allow duplicate objects to appear
in a list or tree, but the nodes of a list or tree are a set,
which does not allow duplicates. For this reason we re-
quire the elements of a list or tree to be of type Cell[T].
A cell is an object whose only purpose is to contain
the identity of another object of the list or tree’s ac-
tual element type. This allows all the nodes to be
unique, but to potentially reference the same object.
We will use List[T] as a shorthand for List/Cell[T]],
and similarly for trees. Most of the query operators
implicitly dereference the contents of the cell to get
and manipulate the object that it contains.

A list or tree, then, is a parameterized type, List[T]
or Tree[T], and is defined to have a set of nodes, V
and a set (for trees, a set of lists) of directed edges,
E. Tree edges are directed away from the root, list
edges are from left to right. “Fixed-arity” trees have
constant out-degree, and “variable-arity” trees have
non-constant out-degree. We assume that trees are
ordered, that 1s, the children of a node appear in order



from left to right.

We adopt the following notation in the rest of the
paper: L 1s a list, T is a tree, Ip is a list predicate,
and tp is a tree predicate. Predicates are defined in
Section 3.

A sublist of L is an embedded list of contiguous
elements. There are two kinds of substructures for
trees that are of interest. We use subgraph to mean a
connected subgraph of a tree. A subtree P of tree T is
a subgraph of T" where the following condition holds:
For all nodes n in P, either all or none of n’s children
in T are in P.

We represent lists by writing the elements in se-
quence from left to right, surrounded by [ ]. So, a
list containing a, b, and ¢ would be written as [abc].
Trees are represented by a preorder-based notation in
which a node is followed by a parenthesized list of its
children. For example, the second tree in Figure 1 is

represented by b(d (f ¢) ).
3 Predicates, Patterns, and Results

Query algebras operate by retrieving database ob-
jects that satisfy a boolean predicate. The power of a
query algebra is strongly affected by the power of the
predicates that can be used.

In this section, we present a language for describ-
ing relationships between the elements of ordered data
types like lists and trees. Instead of returning individ-
ual objects that satisfy a boolean predicate, our alge-
bra returns pieces of ordered structures which match
a particular pattern.

3.1 Predicates and pattern alphabets

Operators in the AQUA list and tree algebra use a
pattern to describe the objects of interest. A pattern
defines a language: a set of lists or trees. Pattern pred-
icates are written in a language that is an extension
of regular expressions.

The alphabet for the list and tree predicates is de-
fined by a set of alphabet-predicates. An alphabet-
predicate is a unary boolean function which is applied
to an object. Each alphabet predicate is satisfied by
a finite number of objects in the database. An object
matches an alphabet-predicate if the object satisfies
it.

Alphabet-predicates are written as parenthesized
lambda expressions, so (A(Person) Person.age > 25)
is an alphabet-predicate that should be applied to an
object of type Person. In a pattern this predicate will
match any Person object whose age is > 25.

In order to limit the complexity of list and tree
queries, we only allow alphabet-predicates to be con-
structed from values of stored attributes of objects?,
constants, comparison operations, and the boolean op-
erators AND, OR, and NOT. These constraints ensure
that any alphabet-predicate can be evaluated in con-
stant time.

3.2 List patterns

AQUA list patterns are derived from regular ex-
pressions, and provide the operations concatenation
(o), Kleene closure (*), and disjunction (]). We define
a list pattern Ip inductively. In the base cases, Ip is
an alphabet-predicate or the metacharacter 7 (which
is always TRUE). The inductive cases follow. A list
pattern can be defined as a union of two list patterns
(Ip1|lp2) or as a concatenation of two list patterns
(Ip1 olp2). In most cases, the o symbol is omitted. Tt-
erative self-concatenation (Kleene closure) is denoted
as [p* (zero or more times) or [p* (one or more times).
A more formal description of a list pattern Ip is:

lp ==[ilp] |[ip]m
ilp ::= alphabet-predicate |? |ilpt | ilp*
| Litp ] |lpolp [ip [ lp m
We allow the use of [ ] to show grouping and to im-
prove readability. The metacharacters ~ and $ (writ-
ten as “[p and {p$) indicate that {p must match at the
beginning or the end of the list respectively.

@,
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Figure 1: Using concatenation points in tree patterns

3.3 Tree patterns

We use a regular expression-like language for de-
scribing patterns for trees. Most of the operations
for regular expressions generalize nicely to trees, with
the exception of concatenation and operators derived
from it (like Kleene closure). The difficulty arises be-
cause 1t is not clear where concatenation should take
place. Our solution to this difficulty is to adopt the

2This cannot be determined by the user, since it would be
a violation of encapsulation. However, the query optimizer can
verify that the attributes involved are stored and not computed.



notion of concatenation points [6,33] which are used
to specify where the concatenation should occur. We
allow multiple concatenation points to appear in our
patterns. A single concatenation point i1s usually de-
noted by the Greek letter «, and multiple concate-
nation points are denoted by subscripted versions of
a, such as a1, a9, ...a, . We also require concatena-
tion and its derived operators to be parameterized by
a concatenation point (e.g. o4), so that the correct
behavior is observed in the presence of multiple con-
catenation points.

Concatenating tree pattern ¢{p; with ¢ps using con-
catenation point ay is written as tpy oq, {pa. For ex-
ample, Figure 1 shows how the pattern a(b(d(f g)e)c)
can be written as the concatenation [a(a; as) og,
[(d(f 9))]] 0, -

Similarly, the iterative self concatenation opera-
tions ? are subscripted, giving tp*=1 and tpTe1 for zero
or more and one or more self concatenations respec-
tively. If two trees are concatenated with a concate-
nation point «; and there 1s no « in the first tree, the
result is just the first tree. As with lists, the last it-
eration of an iterative self concatenation concatenates
NULL to the appropriate concatenation points. As
an example of iterative self concatenation, take the
pattern Ja(b ¢ «)]"*. Four elements in the language
defined by this pattern are shown in Figure 2.

P N
P %}%

Figure 2: Self Concatenation in trees

Tree patterns provide the operations of concatena-
tion (oq), Kleene closure (*,), and disjunction (]). As
with lists, tree patterns can be defined inductively. In
the base cases, a tree pattern t¢p is either a) a sin-
gle node tree, represented by an alphabet-predicate,
?, or a concatenation point or b) the root of a tree,
represented by an alphabet-predicate, or 7, followed
by a parenthesized list of tree patterns for the list of
children.

A more formal description of a tree pattern tp and a
tree list pattern (list of children) tlp is:

3The inclusion of these operations means that some tree
queries will be exponential. The performance of many such
queries can be improved using our optimizations.

tp ::= alphabet-predicate |7 |« |[ip] |
alphabet-predicate (tlp ) |7 (tlp) |
tpoatp |ip*e |tp™ |ip['tp m

tlp ==tp |tipotlp |tipt |tlp* |
tp [ tlp | [tip]m

As an analog with list patterns, the tree pattern Titp
matches only when tp is at the root of the tree and
tp L matches only when all leaves of ¢{p match leaves
of the tree. For example, both T b(d e) and b(d el)
match the subtree 6(d e) in the second tree in Figure
1 and only b(d e L) matches the subtree 6(d e) in the
fourth tree. We also use [ ] for grouping.

Since we use the list language to specify the children
of any node, we can have trees in which nodes may
have a nonuniform and arbitrary number of children.

3.4 Matching and Return Results

The result of a list or tree query operation is a new
list or tree which contains the appropriate objects from
the original list or tree. The use of patterns in list and
tree queries can be viewed as a two step process. The
first step is matching the pattern against the input,
and the second step is determining what to return.

The alphabet for list and tree patterns is alpha-
bet predicates, but the alphabet for lists and trees in
the database is objects. In order to match list and
tree patterns to database objects, the patterns and
the objects they are matched against must have the
same alphabet. We can transform a pattern P into
P’ as follows: eliminate the alphabet predicates from
P by replacing each alphabet predicate ap in P with
the regular expression (#1]s|...|x,), where z1,... 2y
are the objects in the database that satisfy ap. Now
the pattern and the match candidates have the same
alphabet. Given an input list (or tree) L, a sublist
(or subtree) I of L matches a pattern P if T is in the
language described by P’. I is called an instance of
P.

After a pattern is matched, the instance matching
the pattern is “returned”. In some situations, only a
portion of the matching instance is of interest. So, we
provide the ! metacharacter as a prefix to a subpattern
P tospecify that the largest subtree rooted at the node
matching P’s root be pruned from the result. For an
example see the definition of sub_select in Section 4.

3.5 NULLs and Concatenation Points

If we view trees and lists as recursively defined
types, then we recognize that all leaf nodes in a tree
and the last list node have NULLs for children. We



extend this notion (adapted from list and tree pat-
terns) to allow concatenation points to appear in lists
and trees. When a concatenation point symbol ap-
pears in a list or tree, it is treated as a labeled NULL.
The only operation which is able to tell that such a
NULL is present in a list or tree is the concatenation
operator (o, o, ), which examines the NULL’s label to
determine the applicability of the concatenation. This
facilitates the use of our split operator.

4 Tree Operators

In this section we briefly describe some of the im-
portant tree query operators. AQUA also provides a
range of other operators for purposes like navigating,
updating, and providing structural information about
a tree instance. These operators are not discussed in
this paper.

Query operators The tree query operators can be
classified into two sub-categories — those common to
all bulk types (e.g. sets, bags) and operators that
are specific to ordered bulk types. Select and ap-
ply belong to the former category while sub_select,
all_desc, all_anc, and split belong to the latter cat-
egory.

To illustrate the behavior of the operators we use
a simple example of a family tree (Figure 3). Sec-
tion 5 gives a more intricate example of trees and tree
operators. Consider a family tree containing the de-
scendants of a famous person. Each node represents a
person object with a large number of attributes. How-
ever, in our example we only list the name, citizenship,
eye color, and education attributes for each person in
the tree. Each edge stands for the relationship “a child
of” and a path in the tree stands for the relationship “a
descendant of”. In the rest of this section we describe
the operators and how they work on the example tree.

Select and apply are derived from the respective
set/bag operators in AQUA. However, since they op-
erate on ordered types, the nodes of the result tree
maintain the same relative order as the nodes in the
input tree T'. Assume T is of type Type[S].

o Select(p)(T): selects all nodes of T' that sat-
isfy the predicate p : S — Bool. Here p is an
alphabet-predicate which is applied to each node.
If two nodes n; and ns satisfy p, ny is an an-
cestor of ny in the result tree(s) if and only if
ny 1s an ancestor of no in 7'. If no nodes in the
path between n; and ny (excluding nq, no) in T,
satisfy p then there is an edge (nq, ns) in the re-
sult. So, select produces a set of trees with all

Figure 3: A Family Tree T'

the “predicate-satisfying” nodes and all the edges
produced using the above guideline. The result
set will contain only one tree if the root node of
T satisfies p else it will contain a forest containing
trees rooted at nodes r1 ... r, that satisfy p (and
no ancestor of r; in 7' satisfies p).

e Apply(f)(T): applies function f : S — U to
all the nodes of T', and constructs a tree of type
Tree[U] isomorphic to T, containing the corre-
sponding results.

The second category of operators also allows us to
specify the relative order of the input nodes that sat-
isfy the predicate. Most of the operators take a tree
pattern ¢p and find the matching instances for ¢p in
T. Figure 4 specifies a matching instance (or match)
for tp = “Mat” ( ¢ “Ed”) from tree T in Figure 3.
The operator being used determines what is returned.
For example, after matching, the sub_select opera-
tor returns the subgraphs of 7" that match ¢p whereas
all_anc and all_desc return the matching subgraphs
along with their ancestors and descendants respec-
tively. These last two operators are very useful for
describing where the match occurs in algebraic terms.

e Split(tp, f)(T): For each match of tp in T', split
creates three intermediate results: A tree corre-
sponding to all ancestors of the match and their
descendants (except the match itself); the match;
and a list of all trees descended from the match.
For each match, split applies a function f to this
3-tuple and returns a set containing the results of
f for each match. To illustrate how split works
consider the following example. Suppose we wish
to split the tree 7" on the basis of the pattern “par-
ent is Brazilian, one child is American”. Using the



shorthand “Brazil” to stand for A(p) p.citizen =
“Brazil”, “USA” for A(p) p.citizen = “USA”, and
('} to indicate tuple formation, we can write the
query as:

split(Brazil (17" USA ) Az, y, 2){x,y, 2))(T)

The result of this query is a set containing one
tuple with three pieces as shown in Figure 4. The
concatenation point « indicates where the match
is attached to the rest of the tree (the ancestors).
The o7 and s indicate where the match’s descen-
dants are attached. Note that «y corresponds to a
subtree pruned using !7* and that «s corresponds
to a subtree pruned because it was actually a de-
scendant of the match.

A

@

Figure 4: Result of split(Brazil( 7% USA 177 ),
Az, y, 2)(w,y,2))(T)

Formally, split can be defined as:
split(tp, /)(T) = {f(z,y,[t1, 12, ... t]) |
(l‘ 0q Y Ouy 11 0ay v Oq, tn = T)
Az og, g =x,fori =1,2.. nand any tree q)
o, nil € L(tp))
Ay contains all oy, 1 < i <n)}

A(Y 0q, nil 0y, nil oy, ...

The split operator is unique in that it allows us to
break up a tree and put it back together later. Pro-
viding an operator to “break” up the tree around a
specific pattern allows us to optimize some queries by
transforming them into a split on a pattern that is in-
expensive to find and to apply simpler queries to the
pieces (an example is presented in Section 5).

e Sub_select(tp)(T): returns the set of subgraphs
of T' that match pattern tp.

sub_select(tp)(T) =
split(tp, A(a, b, ¢) boa,. o, [D(T)

The operation b o, o, «, [] is a shorthand for
concatenating oy, s, ..., o, to NULL.

o All anc(tp, f)(T): can be expressed using split
— it returns the result of function f applied to the
match and all the ancestors of the match. For-
mally, all_anc is defined as:

all_anc(tp, f)(T) = apply(A(a) f(1(a),2(a)))(A)
where A = split(tp, g(a, b, ¢))(T) and
gla,b,¢) = Ala,b,c){a, (boa; as a, [1))

o All _desc(tp, f)(T): can also be defined in terms
of split. It returns the result of the function f
applied to the match and its descendants.

all_desc(tp, f)(1T') = apply(A(a) f(1(a), 2(a)))(A)
where A = split(tp, g(a,b,¢))(T)
and g(a,b,c) = A(a, b, c){b,c)

Why Split? Split is a very powerful operator. It
can be used to construct all of the other matching
operators. Additionally, split may be viewed as an
order-preserving analog for fold [19] that is based on
pattern matching. Split also allows us to preserve the
context of the match. One might ask, though, what is
the use of retaining the context. While there are cases
in which users might want to see this in the result, we
feel that the primary motivation is in optimization.

While a complete treatment of this topic is beyond
the scope of this paper, the basic idea is simple. In
relational optimization, a select with a complex con-
junctive predicate might be rewritten as an intersec-
tion of two or more selects, each containing a different
conjunct (or set of conjuncts) from the original. In
this way a complex predicate is broken into simpler
pieces some of which might be very cheap to process
(e.g., by using an index).

We mirror this technique with sub_select in trees,
by using the split operator to produce simpler
sub_selects. Thus the query sub_select(d(e(h i)j))
(T') can be rewritten as:

apply(sub_select(Td(e(h i)j)))
(split(d, A(2, 4, 2) ¥ 00,0 2)(T))

Assume that we can use an index to efficiently lo-
cate all nodes in T that match d. The intuition is



that the split operator uses the index on d to pick
all the subtrees of T" that are rooted at d. This dras-
tically narrows the search space for the subsequent
sub_select since the pattern can occur only at the
root of each tree in the result set of split. So, ap-
plying sub _select to the result of split produces the
answer to our original query more efficiently.

As described above, AQUA has a large number of
query operators which have been chosen for their use-
fulness and succinctness; however they can all be ex-
pressed in terms of a smaller subset of primitive oper-
ators. The primitive tree query operators are apply

and split [30].
5 More Tree Queries

In order to demonstrate the use and power of the al-
gebra, we consider a slightly more complex example.
Consider a parse tree T of a database query. Each
node stands for an algebra operator and the children
of anode are the inputs to the operator (Figure 5). We
can specify compile time optimizations on 7" using our
tree operators. This suggests that our tree query lan-
guage would be useful in constructing a rewrite based
optimizer.

/

G

Figure 5: A parse tree

The parse tree is of type Tree[Parse-iree-node] where a
Parse-tree-node supports the method OpName which
returns a string that is the name of the query operator.

Suppose we wish to “optimize” the query repre-
sented by this parse tree 1" and the rule that we wish
to use is:

select(R,and(p1,p2)) = select(select(R, p1),p2)

The first step 1s to find all the places where the
subtree select(R,and(p1,ps2)) occurs with its con-
text. The second step is an update operation where
we need to replace this portion of the tree with
select(select(R, p1),p2) (which is why we need the
context).

The first query is split(select(!? and), f)(T). Here
we use “select” as a shorthand for the predicate A(pn)
pn.OpName = “select” and “and’ for the predicate
A(pn) pn.OpName = “and”. This returns a set of
matches where the pattern occurs. In order to mod-
ify the parse tree, we need to specify an appropriate
function f which will create a new parse tree

fle,y,2) = wog (tree( A(A(B D)E)) where
= A(BC(D E))) 0ay,as,a5 #

The update function f is a three-place function that
operates on the three pieces that split produces. The
first two pieces are subtrees, while the third compo-
nent (z) is a list of subtrees. The operation yoa, a,,a, %
is a shorthand for writing yoq, 21 04, 2204, 23 Where z;
refers to the ith element of the list z. Operator tree
creates a new tree and = is a shorthand for specifying
that y is of the form A(B C(D F)) where A...E are
bound to nodes of the tree.

Now let us consider querying over trees with
variable-arity nodes. An example of such a tree is
a parse tree for a C program. One simple optimiza-
tion over such a parse tree might be to find out if any
printf (which is a variable-arity function) refers to a
particular data structure LargeData at least twice so
that we could cache the data structure appropriately.
In this query we do not know a priori the arity of
the printf node. So we need to use the notation for
variable arity trees to express the query.

sub_select(print f(?* LargeData 7" LargeData 7*))(T')

The query returns all occurrences of printf that refer
to at least two occurrences of LargeData, along with
all of its other parameters.

6 List Operators

Ignoring typing issues for the moment, we can view
a list as a tree in which each tree-node has at most
one child. Let’s call such trees list-like trees. As a
result, list operators translate to the corresponding
tree operators applied to list-like trees.

We divide list query operators into two categories,
similar to the categories for the tree query operators.
Consider the first category of operators — select and
apply. Select selects all the nodes that satisfy the
predicate p from the tree T, where T is a list-like
tree. This operation would return a singleton set with
a tree containing nodes that satisfy p. Each of the
nodes of the resulting tree will have at most one child.
The result 1s the same as in the case where the type



of Tt 1s a list and the output type is also a list. We
can easily see that list apply is the same as the tree
operator apply.

The next category of operators - sub_select,
all_anc, all_desc, and split take as input a list predi-
cate. These operators are similar to the tree operators
assuming we restrict their input to list-like trees. How-
ever, there are some differences in notation between
list and tree predicates. So, before we demonstrate
the mapping between list operators and their corre-
sponding tree operators, we need to address the issue
of different notations used for specifying patterns in
lists and trees.

The list pattern [abc] corresponds to the tree pat-
tern a(b(c)). This difference in notation is due to the
fact that trees normally have multiple children and
the use of () allows us to establish the hierarchy be-
tween the nodes of the tree. Now we show the map-
ping between the tree-predicate language and the list
predicate language. The list and tree disjunction oper-
ators (|) are identical. The concatenation (o4) and the
Kleene closure (#,) operators in trees are parameter-
1zed by concatenation points. However, list-like trees
can have a concatenation point only at the leaf since
the nodes can have at most one child. So, [abc] o [cha]
in list notation translates to a(b(c(a))) on c(b(a)) in
tree notation, where « is a concatenation point sym-
bol. Kleene closure over lists is slightly different since
we can “pump” any node (or sublist) of a tree. As a
result we have to view the list [dac]b] as a concate-
nation of three sublists; i.e. [d] o [ac]* o [b]. Now
translating this into tree notation, we can write the
pattern as d(ay) o4, alc(ag)) ez o4, b.

Using the above translation from list predicates to
tree predicates, we can map all list operators onto
tree operators. Sub_select(/p)(L) returns the set
of sublists of L that match pattern Ip. Other op-
erators like all_anc({p, f)(L), all_desc(lp, f)(L), and
split(lp, £)(L) are also similar to their corresponding
tree operators except for their input and return types
(which are lists). Formal definitions of these operators
are given in [30].

To 1llustrate the behavior of these operators let us
consider a very simple example of a music database.
The database consists of a large number of songs,
where each song is represented as a list consisting of
nodes that represent a note. Each note has a few prop-
erties like pitch (e.g., A, B, C, etc.) and duration.
Now suppose we wish to find a simple melody (e.g.
[A??F] ) in a particular song L where A stands for
A(n) n.pitch = “A”, F is A(pn) n.pitch = “F”, and
7 1s a note with any pitch. The corresponding query

would be sub_select([A?7F])(L). This would return
a set containing all such phrases in L. Now suppose
we need to find the melody and the context in which
it occurs - if we want the notes preceding the melody
our query would be

all_anc([A??F], Mz, y){x, y))(L)

This returns a set of tuples, one for each match found.
The first field of the tuple returns the sublist from the
beginning of the song up to the starting position of the
melody, the second field returns the melody. All_desc
and split would work similarly.

The primitive query operator for lists is split and
all other query operators can be expressed in terms of

it [30].
7 Related Work

In this section we discuss related work in the area of
algebra and data model support for lists and trees, fol-
lowed by a discussion of work in the area of predicate
languages for these types.

7.1 Ordered Types in Other Data Models

Much of the previous work with ordering deals with
order as in sequences or arrays. There are some papers
that address other types like trees [2,3] and graphs
[14]. However, most of the previous work deals with
ordered types in a piecemeal fashion - our work is
unique in that it takes a holistic approach to bulk
types, including a richer notion of pattern matching.

The operations described in [2] are intended to be
applicable to any bulk type, not just to lists and trees.
As a result, operations like selecting a sublist are not
provided.

MDM [24] presents a query algebra to support lists
in an object-oriented data model. The salient feature
of their algebra is the extension of the predicate lan-
guage to allow position-dependent queries. However,
their predicate language for lists is not as versatile as
regular expressions since predicates are applied to each
element of the list rather than the list as a whole.

The NST algebra [15] is specifically designed for
structured office documents and 1s an extension of re-
lational algebra. It tries to maintain the order of the
input lists whenever possible, with a higher preference
for the order of the first input list. As a result, most of
the operators are not commutative. A tree-like struc-
ture in a document (paragraphs under sections) is han-
dled by treating it as a nested sequence of sequences.
The predicate language is limited in its power - for
example, it cannot be used to extract sublists.



Rs-operations [11] are sequence operations that are
based on pattern matching. Ginsburg and Wang de-
fine a set of powerful operations based on regular ex-
pressions that act as a kind of template for the op-
eration, 1.e., the regular expressions define what the
operation should do “by example”. However, they do
not mention how these operations can be extended to
trees or specify how these operations fit into a query
optimization scheme.

The EXTRA/EXCESS system [34] contains an ar-
ray type constructor and various operations on arrays.
The elements of an array are accessed using their array
indices. However, the system provides no support for
lists (as opposed to arrays), trees or pattern-matching
predicates.

Several authors [12,16] have addressed the issue of
handling tree-structured data, especially in the form
of hierarchical tree structures (specifically in text-
dominated databases). The database is described by
a schema expressed as a grammar and the operators
manipulate data expressed in the form of “production
rules”. Each schema, represented by a tree, defines an
“isa” relationship between the parent node and the
child nodes. These papers, however, do not address
the issue of more general trees.

An algebra for queries on sequences is presented
in [27], but this algebra does not address pattern-
matching (its predicates are applied to one node at a
time). All of the operators result in a single sequence.

Recent work [35,36] on approximate tree matching
discusses tree algebras targeted towards problems in
vision and molecular biology. These papers propose
various distance metrics for trees. These metrics are
useful in answering queries such as “give me all the
subtrees of T' which almost satisfy pattern P”. Such
metrics are easily accommodated in our formalisms.
The authors also present various optimizations for
distance-based queries with associated indices that can
be expressed by query transformations in the AQUA
algebra. Approximate subsequence matching for lists
is addressed in [9], but only fixed-length patterns are
allowed (no regular expressions).

Many commercial systems (e.g. ObjectStore [23])
claim to support queries on lists, but these are simply
the same queries that can be asked of sets; the ordering
properties of lists are not taken into account in either
the predicate language or in the result of the query.

7.2 Predicates for List and Tree Queries

A model and language for sequences of events is
presented in [10]. Their pattern language is equivalent
to regular expressions, but the result of any query is a

single sequence, restricting the set of allowable queries.
Query optimizations such as ours are not addressed.

A powerful pattern language for strings (but not
trees) is described in [13]. This language is context-
sensitive and thus more powerful than ours, but no
attention is given to fitting it into an object-oriented
context or into a query optimization scheme. It ex-
tends the relational algebra select by allowing filters
based on multitape automata.

Our work on list and tree predicate languages is
based on earlier work on regular expressions for lists
and trees [4,6,21,25,33].

The predicate language for lists 1s based on regular
expressions for strings. Our notation for trees is an
amalgamation and extension of ideas first presented
in [6,33]. We have augmented the tree language to
handle trees with variable arity, to distinguish specific
nodes like the leaves, etc. We have also integrated the
behavior of these predicate languages with our oper-
ator domain, to allow users to specify sophisticated
queries over lists and trees.

Another potential candidate for the predicate spec-
ification language was graph grammars [7,8] as they
allow us to express “graph rewrites” in a succinct man-
ner. However, the result of a graph grammar deriva-
tion is dependent on the order in which the produc-
tions are applied. The “order” dependence makes it
very hard, if not impossible, to optimize queries by
splitting or decomposing the pattern into “simpler”
pieces, since the results may vary depending on the
order in which the results of the simpler queries are
combined. Another problem with graph grammars is
the complexity of the notation. A predicate language
based on regular expressions, however, is tractable and
provides us with sufficient querying capabilities.

8 Summary and Work in Progress

We have described the list and tree algebras for the
AQUA object-oriented query algebra. The operators
in the algebra preserve the ordering of nodes in the
original list or tree. The primitive query operator for
lists is split and the primitive query operators for trees
are apply and split. Our use of patterns based on ex-
tended regular expressions allows us to write queries
that are sensitive to the order of the elements in the
list or tree. Regular expressions are familiar, powerful,
and well suited to a number of application domains.
We briefly demonstrated how algebraic decomposition
techniques can be used to optimize queries on lists and
trees. A companion paper [31] treats the problem of
optimization in more detail. There we present opti-



mization rules and access methods for ordered data

types.

As part of our research on AQUA, we have devel-
oped a mapping for the ODMG set and bag algebra
[5] to the AQUA set and multiset algebra. The ar-
ray type in the ODMG specification is similar to our
notion of list, and we believe that we will have little
difficulty simulating the ODMG arrays with AQUA
lists. Our view of predicates, however, is significantly
more powerful.

We are currently developing a cost model and in-
corporating the list and tree algebras into the EPOQ
extensible query optimizer [22] being developed at
Brown University.
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