
Ordered Types
in the AQUA Data Model�

Bharathi Subramanian

Brown University

Providence� RI� USA

Stanley B� Zdonik

Brown University

Providence� RI� USA

Theodore W� Leung

Brown University

Providence� RI� USA

Scott L� Vandenbergy

University of Massachusetts

Amherst� MA� USA

To appear in Proc� �th Intl� Workshop on

Database Programming Languages� ����

Abstract

We present a query algebra that supports ordering among the data ele�
ments� Order is de�ned as a relationship between various data elements
of an instance� This relationship can be a total or partial order among
the elements or among equivalence classes where each equivalence class
consists of one or more elements� In terms of data structures� ordered
types can be viewed as graphs� trees� or lists�

Lately there has been a lot of interest in bulk types like lists� trees�
and graphs that are not supported by traditional data models and query
algebras� This interest is fueled by the fact that much of the data in the
scienti�c domain is inherently ordered� Therefore� scienti�c applications
that involve genome sequences� satellite data� scienti�c data� etc� require
database support for ordered data structures like lists� trees� and graphs�
In this paper� we discuss an extension to the AQUA query algebra to
handle ordered types and their operators� We show how these operators
can �t into a framework for query optimization�

� Introduction

There are many applications ������� in which ordered types are required� Sci�
enti	c applications have a need to store ordered types such as time�series data
and genome sequences� and textual databases store information that is struc�
tured as a tree� These applications store huge volumes of data and must locate
information from these structures very e
ciently�
Query languages and algebras support declarative retrieval from a database�

They are based on a set of high�level operations over collections of objects�
These operations hide the looping structure that would be present in an algo�
rithm that executes them� By and large� these operations have been con	ned

�Partial support for this work was provided by the Advanced Research Projects Agency
under contractN���������J�����ARPA order ����	 and contractDAAB��
����C�Q��� under

subcontract F������
yCurrent address� Computer Science Dept�	 Siena College	 Loudonville	 NY �����

to manipulations of sets� While there has been some recent work on extending
query languages to other bulk types like sequences ����
�� additional research
is needed�
This paper presents an extension to the AQUA �A QUery Algebra� query

algebra ��� to include ordered types like graphs� lists� and trees� N�dimensional
arrays are a topic for future work� We begin by de	ning algebraic operations
over graphs� Graphs are used as the fundamental building block out of which
the operations for the other types are derived� Sequences and trees are viewed
as specialized graphs� Duplicates are introduced into these graph structures
through a notion of a cell type�
We could argue that graphs and trees could be viewed as nested list struc�

tures� but the onus of maintaining the structure is placed on the user� For
example in a tree structure� the user has to prevent two nodes from pointing to
the same �child� list� Also� viewing trees and graphs as types in their own right
allows us to utilize their specialized properties for query optimization and gives
us more �exibility in de	ning operations over them� This distinction might also
help in other related areas like specialized storage structures to speed access
and specialized index structures for querying�
This paper focuses on an algebraic approach to queries over ordered types�

An order is represented by a graph� Such an order can be restricted further to
produce a tree �i�e�� a partial order� or a list �i�e�� a total order��
A goal of this work has been to de	ne the operators on all the bulk types

so that they are consistent with each other� The operations on a more speci	c
version of a bulk type must follow from the operations on a more general version�
For example� Select for a tree must be the same as Select for a graph when the
tree is viewed as a graph� A graph with an empty edge set is essentially a
set� Thus� this kind of degenerate graph must behave in all ways like a set�
Identities that apply to sets must apply to graphs with no edges as well�
In several cases� an operation on an ordered type will not return an object

of the starting type� We do not view this as a violation of the closure property�
In our view� closure should require that an operation will return an object of
a type within the model� For example� a select over a tree is not guaranteed
to produce another tree� however� it will always produce a list of trees which is
a perfectly good type in the model� Such a result can be composed with other
operators for that type�
This paper 	rst brie�y introduces the AQUA data model� Next� it examines

some related work� and then describes our approach to ordered types� This is
followed by a discussion of the speci	c operators that we support for graphs�
trees� and lists� We close with a few examples of how these operators are used
and some suggestions for future research�

� AQUA Model

The AQUA query algebra ��� is based on an object�oriented data model� All ob�
jects have identity� and these identities allow us to distinguish between objects
using identity�based equalities�
Equality is essential to the de	nition of operators like union� intersection

and other comparison�based operators� The default equality is identity� similar
to that for unordered bulk types like sets and multisets� In the case of sets

and multisets� other notions of equality are handled by providing the special
operators group �which creates equivalence classes based on a given equality�
and choose �which picks a member of each class nondeterministically�� For
ordered types� the notion of other equalities is simulated by using these equality�
speci	c set operators on the node and the edge sets�

��� Constructing Types

One of the primary goals of the algebra and the model has been to support
a large number of bulk types in a uniform manner� A type constructor is a
metatype which de	nes a family of types� The Set type constructor de	nes
the family of types that includes Set�Int�� Set�Department�� etc� New types are
created by instantiating the metatype Set�T � Type� with a speci	c type� like
Int or Department�
AQUA provides the following type constructors� sets� multisets� tuples�

unions� functions� cells� lists� graphs� and trees� The algebra also supports the
abs constructor that allows creation of new abstract types� The operators of
the AQUA algebra are a subset of the methods on the AQUA type constructors
and include operations like select� join� and union�

��� Duplicates

All the ordered types are de	ned as a set of nodes N � and a set of edges E�
However� as in the case of multisets� there are cases when there is a need to allow
duplicates� Duplicate nodes could be handled in a manner similar to multisets
but that would not allow for distinction between edges of two identical nodes�
Thus� we introduce the concept of a cell� A cell can be thought of as a wrapper
around an object that allows us to distinguish between two nodes containing
the same object� With cells� we could have the same object represented as two
di�erent nodes� as the identity of the cells provides the uniqueness�

� Related Work

Much of the previous work with ordering deals with order as in sequences or
arrays� Beeri and Kornatzky ��� discuss trees in their paper� However� there
is no known work with directed acyclic graphs or graphs� in the domain of
database applications�
Beeri and Kornatzky propose an object�oriented query processing paradigm

where the objects are built of primitive objects� an explicit object identity type
constructor� and bulk type constructors� Then operations and optimizations
are presented� which apply to any bulk type constructor de	nable in their
paradigm� In this approach� lists� arrays� and trees can all be de	ned� and a
subset of the useful operations on such structures is described in the paper�
These operations include a �pump� function� which is similar to AQUA�s fold
operation� Since the operations described in ��� are intended to be applicable to
any bulk type� not just to lists and trees� they are too general for our purposes
� we wish to distinguish between ordered and unordered types� and provide a
richer set of operations� Furthermore� many of the operations listed in ��� are
not described precisely� and their existence is assumed� Here we remove that

Figure �� Select for Lists

assumption� Graphs are not discussed in ���� and it is not clear how �or if� they
would 	t into the paradigm presented there�
MDM ��
� talks about a query algebra to support lists in an object�oriented

data model� Operators from a discrete� linear�time temporal logic provide the
basis for the algebra� The salient feature of the algebra is the extension of the
predicate language to allow position�dependent queries� which adds a lot more
�exibility to the kind of queries that can be posed to the database� Union and
di�erence are similar to the corresponding operators in EXTRA�EXCESS �����
However� the MDM algebra does not provide for operations on trees or graphs�
The NST algebra ��� is speci	cally designed for structured o
ce documents

and is an extension of relational algebra� The data model is based on nested
sequences of tuples� It tries to maintain the order of the input lists whenever
possible� with a higher preference for the order of the 	rst input list� For exam�
ple� in union� elements are concatenated and duplicates from the second list are
eliminated� As a result� most of the operators are not commutative� Duplicates
are allowed in lists� however union and intersection eliminate duplicates from
the result set� A tree�like structure in a document �paragraphs under sections�
is handled by treating it as a nested sequence of sequences�
Rs�operations ��� are sequence operations that are based on pattern match�

ing� Along with these operations� sequence logic �SL�� which is a 	rst�order
logic� is also introduced� Ginsburg and Wang de	ne a set of powerful oper�
ations based on regular expressions� which act as a kind of template for the
operation� However� the paper does not mention how these operations can be
extended to trees� Also� the authors do not specify how these operations 	t
into a query optimization scheme�
The EXTRA�EXCESS system ���� contains an array type constructor� ar�

rays can be 	xed� or variable�length and can contain entities of any EXTRA
type� The elements of an array are accessed using their array indices� but there
is no ability to traverse from one element to another in these arrays� Operators
are provided for extraction of elements and subarrays� for creating and con�
catenating arrays� and for applying a function to all elements of an array� The
system provides no support for lists� trees� or graphs� and multidimensional ar�
rays are constructed as arrays of arrays� Thus the arrays of EXTRA�EXCESS
bear more resemblance to AQUA�s N�dimensional arrays �which will be dis�
cussed in a future paper� than to the structures described in this paper�

� Ordered Types

In this section� we describe ordered bulk types and the operations on them�
Order in our setting is a mechanism to specify a �precedes� or �follows� re�
lationship between pairs of elements� In its most general form� this kind of
relationship can be represented as a graph� where elements are represented as
nodes of the graph and edges between elements represent explicit precedence
relationships� �Precede� is an antisymmetric relation� i�e� if a precedes b and b
precedes a� then a and b are equivalent� As a parallel� strongly�connected com�
ponents in graphs �a strongly connected component is one in which all nodes
are reachable from each other� could be viewed as an equivalence class� In a
sense� all nodes in the strongly�connected component are reachable from the
same set of nodes in the graph and are equivalent for reachability queries�

Graphs form the basis for our de	nition of ordered types� Lists and trees are
specialized forms of graphs� Besides the obvious restriction that the underlying
structure be a tree �or a list�� we impose an additional constraint of transitivity�
In other words� if there is a directed path a�� a�� � � � � an in the tree �list�� we
assume that there is an implicit edge between a� and an� Note that these
implicit edges are not actually present in the tree structure� To see why this
transitivity assumption is natural when viewing lists� consider selecting birds
from a list of animals A � �cat crow mouse sparrow dog robin parrot� �Figure ���
Treating list A as a graph would give us a set of graphs instead of a list �� Most
of us would expect the select to return �crow sparrow robin parrot��

However� note that the edges between crow and sparrow � sparrow and
robin did not exist in the original list though they are there in the expected
result� The implicit assumption here is that the relationship between the ele�
ments is transitive� A similar example can be used to show that transitivity
is a natural assumption for trees as well� Note that the transitivity property
ensures that the resultant type is the same as the input type �Lists �� Lists
and Trees �� Trees or a set of Trees�� As a result of this property� the behavior
of the operators for graphs is slightly di�erent than that for lists and trees�

Sets in the AQUA model are at the other end of the spectrum� they can
be viewed as the most unordered form of graphs� as sets can be represented as
graphs with empty edge sets� We explore this connection in greater detail in
section ����

�Assuming we ignore the typing issues for the moment�

��� Graphs

Graphs are de	ned as a set V of nodes� and a set E of directed edges between
the nodes� An edge is de	ned as a pair of nodes and the direction of the edge
is from the 	rst node to the second�
The type constructor for graphs is de	ned as Graph�T�� which constructs a

graph type consisting of objects of type T as the nodes� Edges in the graph
are tuples consisting of a pairs of nodes of type T � As mentioned earlier� this
de	nition does not allow duplicate objects as nodes� Duplicates are handled
by using a graph of type Graph�Cell�T��� Since this is used later� while de	ning
type conversion operators on trees and lists� we use the term �cell�graphs� to
refer to such graphs� Graphs� like sets and multisets� do not participate in
sub�typing�

��� Trees and Lists

Trees and lists are also de	ned as a set V of nodes� and a set �or a list in
the case of ordered trees� E of directed edges between the nodes� However�
the underlying structure of a tree �list� instance must be a tree �or a list��
Assuming edges are directed away from the root� this implies that a tree must
have one node with no incoming edges and all other nodes must have a single
parent �or incoming edge�� For a list� there must be one node with no incoming
edge and a node with no outgoing edge �except for the empty list�� All other
nodes in a list must have one incoming edge and one outgoing edge�
The AQUA model supports two kinds of trees� ordered� and unordered�trees�

Ordered�trees are trees where there is an order between the children of a node
and unordered�trees assume that there is no explicit order between the children�
Ordered�trees are de	ned as a set V of nodes and a list E of directed edges �as
opposed to a set of directed edges for unordered�trees�� The relative ordering
among the edges from the parent node to the child node in the list E determines
the order of the children nodes�
A tree �or list� of type T consists of nodes of type Cell�T� and the edges

between these nodes� The node typing is di�erent from that of graphs� where
the nodes are of type T � We do this since it allows us to handle duplicates in a
consistent manner� Duplicates in trees and lists present a problem when dealing
with operators that could possibly map two or more nodes of the original tree
onto the same object� In such a scenario� preserving all the associated edges
might violate the tree �or list� structure� As a result� we adopt the �cell�
structure to avoid duplicate nodes�
The type constructor for trees is de	ned as Tree�T�� which is a tree type

consisting of nodes of the same type Cell�T� and edges between these nodes�
The type constructor for lists is similar� List�T� is a list type consisting of nodes
of type Cell�T� and their associated edges� Lists and trees do not participate
in subtyping�

� Operators

In this section� we describe in detail the various operations on graphs� trees
and lists� The functionality of most operators is similar across all the ordered

types� The syntax of the operations is similar to that used in AQUA���� and is
based on lambda calculus�
Predicates are functions with boolean return type� and are composed using

AQUA�s built�in operators and its term language �which is based on lambda
calculus�� Predicates are passed as parameters to operators like select�
Cells have two operators� Cell�a� creates a cell containing a� Cell con�

tent�c� returns the object contained in cell c�

��� Graphs

In this subsection we describe the operators on graphs� Table � details all the
operator de	nitions� We now describe some of the notation used in the table�
The input graphs are G � �VG� EG� and H � �VH � EH� and the output graph
is R � �VR� ER�� Individual nodes are denoted by lowercase letters� with the
graph name as a subscript �for example� uG� vG� xG�� Predicates are indicated
by p and f represents a function�
The primary query operators are select� apply� union� and intersect�

Both union and intersect use the default equality for unioning �or intersect�
ing� the node and edge sets� Im ancestor and im descendant are the traver�
sal operators� The algebra also de	nes other support operators like nodes and
edges along with update operators like add node� add edge� and delete �
edge� The algebra also has conversion operators to convert from a graph �of
the appropriate structure� to a tree or a list�

Figure �� Flight graph for Airline�

As an example� consider an airline company� Airline�� They have a large
number of airports out of which they operate� with �ights connecting them �	g�
ure ��� In our graph� the nodes represent the airports and the edges represent
the �ights between the airports� The nodes are assumed to have more details
about the airports� besides their city names�

type Airport � abs�Tuple�city � String� ����
city�Airport� � String�

���

D
e	
n
it
io
n
s

se
le
c
t�
p
��
G
�

�

�V
R

�
fv
R

jp
�v
G

�g
�
E
R

�
f�
u
R

�
v
R

�j
��
u
R

�
v
R

�
�
E
G

�
�
p
�u
R

�
�
p
�v
R

�g
�

a
p
p
ly
�f
��
G
�

�

�V
R

�
ff
�v
G

�g
�
E
R

�
f�
f
�u
G

��
f
�v
G

��
j�
u
G

�
v
G

�
�
E
G

g
�

u
n
io
n
�G
�
H
�

�

�V
R

�
u
n
io
n
�V
G

�
V
H

��
E
R

�
u
n
io
n
�E
G

�
E
H

��

in
te
r
se
c
t�
G
�
H
�

�

�V
R

�
in
te
r
se
c
t�
V
G

�
V
H

��
E
R

�
in
te
r
se
c
t�
E
G

�
E
H

��

im

a
n
c
e
st
o
r�
x
G

��
G
�

�

fv
G

j�
v
G

�
x
G

�
�
E
G

g

im

d
e
sc
e
n
d
a
n
t�
x
G

��
G
�

�

fv
G

j�
x
G

�
v
G

�
�
E
G

g

so
u
r
c
e
s�
G
�

�

fv
G

j�
x
G

�
v
G

���
E
G

g

si
n
k
s�
G
�

�

fv
G

j�
v
G

�
x
G

���
E
G

g

n
o
d
e
s�
G
�

�

V
G

e
d
g
e
s�
G
�

�

E
G

g
r
a
p
h
�x
�

�

�V
R

�
fx
g�
E
R

�
�
�

t
c
lo
su
r
e
�G
�

�

�V
G

�
E
R

�
f�
u
G

�
v
G

�j
co
n
n
e
ct
e
d
�u
G

�
v
G

�g

w
h
er
e
��
u
G

�
v
G

�
�
E
G

�
�
�u
G

�
v
G

�
	

co
n
n
e
ct
e
d
�u
G

�
v
G

�

an
d
��
u
G

�
m
G

��
�n
G

�
v
G

�
�
E
G

�
�
�c
o
n
n
e
ct
e
d
�m
G

�
n
G

��

	

co
n
n
e
ct
e
d
�u
G

�
v
G

��

a
p
p
e
n
d
�u
G

�
v
H

��
G
�
H
�

�

�V
R

�
u
n
io
n
�V
G

�
V
H

��
E
R

�
u
n
io
n
�f
�u
G

�
v
H

�g
�
u
n
io
n
�E
G

�
E
H

��
�

a
d
d
n
o
d
e
�x
��
G
�

�

�V
R

�
u
n
io
n
�V
G

�
fx
g�
�
E
G

�

d
e
le
te
n
o
d
e
�x
G

��
G
�

�

�V
R

�
d
i�
�V
G

�
fx
G

g�
�
E
R

�
d
i�
�E
G

�
u
n
io
n
�f
�u
G

�
x
G

�g
�
f
�x
G

�
v
G

�g
��
�

a
d
d
e
d
g
e
s�
S
��
G
�

�

�V
G

�
E
R

�
u
n
io
n
�E
G

�
f�
u
G

�
v
G

�j
��
u
G

�
v
G

�
�
S
�
�
�u
G

�
v
G

�
V
G

�g
�

d
e
le
te
e
d
g
e
s�
S
��
G
�

�

�V
G

�
E
R

�
d
i�
�E
G

�
S
��

r
e
p
la
c
e
n
o
d
e
�x
G

�
y
��
G
�

�

a
d
d
e
d
g
e
s�
A
��
a
d
d
n
o
d
e
�y
��
d
e
le
te
n
o
d
e
�x
G

��
G
��
�

w
h
er
e
A
�
u
n
io
n
�f
�y
�
v
G

�j
�x
G

�
v
G

�
�
E
G

g�
f
�u
G

�
y
�j
�u
G

�
x
G

�
�
E
G

g�

T
ab
le
��
G
ra
p
h
O
p
er
at
or
s

�

type Airline � Graph�Airport�

Our query is to 	nd all the places that have a direct �ight to Boston� either
by Airline� or Airline�� The basic query is to get all the im ancestors of the
node Boston in the combined airline map� TwoAirlines� The combined airline
map is obtained by unioning the maps of Airline� and Airline��

TwoAirlines � union�Airline�� Airline��

DirectToBoston � im ancestor�choose�nodes�select���n�n�city � Boston�
�TwoAirlines����

�TwoAirlines�

��� Trees

In this section� we brie�y describe the operators on trees� Most of the tree
operators have been derived from the corresponding graph operators� so in the
following paragraphs we shall highlight the di�erences between the correspond�
ing graph and tree operators� We discuss the operators for ordered�trees below�
operators for unordered�trees follow logically from the ordered�tree operators�
Therefore� for the sake of simplicity we use the short�form �tree� to refer to
ordered�trees� Also� in all our examples we assume that all edges are directed
away from the root of the tree�
The basic tree operators in AQUA are� select �p� �T �� apply �f� �T ��

sub select �r� �T �� PT �T �� all desc �r� �T �� all anc �r� �T �� sources
�T �� sinks �T �� nodes �T �� edges �T �� e edges �T �� im ancestor �x��T ��
im descendant �x� �T �� tree �x�� and 	nd path �x� �T �� The update op�
erators are� append �from node� sibling� �T�� T��� add node �x� parent�
sibling� �T �� delete node �x� �T �� replace node �x� y� �T �� and a number
of conversion operators to go from a tree to a graph or a list�
Note that some functions are de	ned only on graphs� union� intersect�

t closure� add edges and delete edges� This is mainly because the result
of these operations will not be a tree �the resultant structure will be a graph��
However� the functionality of the operators can be obtained by converting the
input trees to graphs and applying the corresponding graph operators� For
example� union on two trees with common nodes might produce a graph due
to unioning the edge sets of the common nodes from the two input trees� This
operation however� can be performed by �converting� trees to graphs�
The main di�erences between the other tree operators and their correspond�

ing graph operators are�

 The children of a node in a tree are ordered� As a result� the opera�
tors return a list of nodes or sub�trees instead of a set� For example�
sources�T �� sinks�T �� im ancestor�x��T �� and im descendant�x��T �
are similar to the corresponding graph operators� except that the result
is a list of nodes� So� source returns a singleton list consisting of the
root of the tree� sinks returns a list consisting of all the leaves of the
tree� im ancestor returns a list containing the parent of the given node

Figure �� Select on a tree

in the tree and im descendant returns a list of all the children of the
given node� in order�

 The edges of a tree are transitive� Therefore� edges operator returns a
list containing all the edges of the tree � this includes the edges that
were explicitly added to the tree and the edges that were �created�
due to the transitive property of the edges� The e edges operator� in
contrast� returns a list containing only the edges that were explicitly
added to the tree� For example� edges on the tree rooted at � �	gure
�� would return �f�� �g� f�� �g� f�� ��g� f�� ��g� and e edges would return
�f�� �g� f�� �g� f�� ��g�� This property also in�uences any operator that
�deletes� nodes �select and delete node�� Deletion of a node causes
an implicit edge� i�e� an edge created due to transitivity� to become an
explicit edge which can be loosely thought of as the edges used to draw
the tree� So� if we just look at explicit edges� a deletion causes addition
of new edges �from the list of all edges� between the the parent and the
children nodes of the deleted node �Figure ���

Select�p��T � selects a list of sub�trees of tree T � based on the nodes that
satisfy predicate p� All the edges between selected nodes from the input
tree are present in the resultant graph� Any new edges �created� due
to the transitivity relationship between the nodes are also added in the
resultant tree �Figure ��� The ordering in the resultant list is based on
the relative ordering of the roots of each tree in the list� For example� in
	gure �� the tree with node � as the root comes �before� the tree rooted
at node �� in spite of the di�erence in levels� The ordering is mainly based
on position � if sub�tree A is to the left of sub�tree B �assuming ordering
is from left to right�� then A is followed by B in the resultant list� It is a
kind of depth�	rst ordering� The sub�trees in the list are ordered based
on the relative order in which the respective roots of the sub�trees are
visited in a depth�	rst traversal�

 For certain operators� there are certain constraints on their behavior� as
the result has to be a tree� For example� add node adds a node and an

edge connecting the node to the tree �at the speci	ed point��

Figure �� Deletion in a tree

In the case of append� the to node is always the root of the second
tree� hence it is not a parameter to the operator� Append �from node�
sibling� �T�� T�� appends tree T� to tree T�� as a child of the from �
node� after the sub�tree rooted at sibling �which is also a child of the
from node�� If sibling is not speci	ed� the tree T� is added as the 	rst
child of the from node�

 Trees of type T are composed of cells that contain objects of type T �
As a result� most function applications deal with the contained�object
instead of the cell� So� as in the case of apply on a graph� apply on trees
transforms the �contained�object� based on the parameter function f �

Apply�f��T � applies the function f to the �content� of each cell �node�
of the tree to transform the existing object into a new object� The edge�
set remains the same� This ensures that the basic structure of the tree
is not modi	ed� The resultant tree is built of new cells that contain the
transformed objects �Figure ���

Other operators that are speci	c to trees are� Tree�x� creates a tree that
consists of node x� Find path�x��T � returns a list of nodes encountered on the
path from the root of the tree T to the node x� The last node of the resultant
list is x� and the 	rst node is the root of the tree� Sub select�r��T � returns
a set of all sub�trees of tree T that match the pattern r� The PT�T � operator
�powertree� takes as input a tree T and returns a set of all sub�trees of T �
This operator is somewhat similar in spirit to the power�set operator for sets
and is used primarily for de	ning other more speci	c operators� For example�
sub select can be expressed as�

sub select�r��T � � set select���x� x � L�r���PT�T ��

PT generates a set of all subtrees of T and set select �select over a set�
selects those subtrees that are in the tree language de	ned by the tree regular
expression r �L�r��� All desc�r��T � and all anc�r��T � are specialized cases of
the PT operator that extract all maximal subtrees of T that start �all desc�

or end �all anc� with the pattern r� Speci	cation of the match pattern r is
discussed in detail in subsection ����

Figure �� Apply���x�A��T �

Replace node and nodes are similar to the corresponding operators in
graphs� The only di�erence is due to typing of the input and the output� For
example� nodes on a tree returns a set containing all the nodes of the tree�
similar to nodes for graphs� However� the tree�nodes are cells unlike graph�
nodes which are objects�

��� Lists

In this section� we discuss operations on lists� These operators are almost
identical to the corresponding operators on trees� except for the input and
output types which are lists instead of trees� and the absence of the �sibling�
parameter� Any kind of add operation in trees requires a sibling parameter�
that speci	es the node after which the new node�sub�tree must be added� This
is needed for trees as the children of a node are ordered� In the case of a
list however� since there is only one child for every node� this parameter is
unnecessary�

Figure �� Add node and Delete node on a list

Select �p� �L�� apply �f� �L�� sub select �r� �L�� PL �L� �similar to PT��
all su
x �r� �L� �similar to all desc�� all pre	x �r� �L� �similar to all anc��
nodes �L�� edges �L�� e edges �L�� add node �x� y� �L�� replace node �x�
y� �L�� delete node �x� �L�� and the conversion operators are similar to the
corresponding unordered tree operators� List predicates are discussed in greater
detail in subsection ���� Add node in a tree does not involve deletion of any
existing edges� however� in the case of lists adding a node in the middle of the
list might result in deletion of an edge and addition of up to two edges �Figure
��� Source�L�� sink�L�� im ancestor �x� �L�� im descendant�x��L� are
also similar to their equivalent graph operators but they return a single node
for lists instead of a list of nodes as in trees� Append�L�� L�� is similar to
append in trees and graphs� but the from node is always the last node of list
L� and the to node is the 	rst node of list L�� This results in a concatenation
of the two input lists�
There are list operators that do not have corresponding tree operators�

List�x� creates a list with a single element x� Sort�f��L� sorts list L based
on the comparator function f � f is a transitive function that given any two
elements �a� b� from the list L� returns less�than if a should appear before b
in the result list� greater�than if a should appear after b in the result list and
equal�to if a and b are �equal� based on the function f �

��� Sets as graphs

The AQUA model supports various bulk types� among them sets and graphs�
Sets can be viewed as graphs with an empty edge set� With this view� all
the operators for graphs neatly transform into the corresponding operators for
sets� For example� union and intersection on graphs with empty edge sets
are similar to these operations on sets� Similarly� apply and select behave
the same way for graphs with an empty edge set� as with sets� This makes the
addition of ordered types into the model seamless and consistent with the other
bulk types�

� Predicates

Ordered bulk types� unlike sets and multisets� have the notion of �position� of
the constituent objects� This opens up possibilities of having a more powerful
predicate language� The remainder of this section describes a richer set of
predicate formers for lists and trees�
This investigation was motivated by the observation that query optimization

is facilitated by identities that allow us to break a predicate into pieces� some of
which can be evaluated cheaply� These pieces must be composable to produce
the original query� We give examples of this type of decomposition in the
context of our pattern�based predicate languages�

��� List Predicates

In this subsection we discuss order�based predicates for lists� These predicates
are based on regular expressions �for describing match patterns� and lambda

calculus� However� we do envisage a more user�friendly interface that would
translate user�de	ned queries to algebra queries based on regular expressions�
We use the standard notations for specifying regular expressions � ��� and

��� are used for specifying precedence� j for disjunction �union�� � for Kleene
star� � for concatenation� b to mark the beginning of the list� and � to mark
the end of the list� We use ab as a shorthand for a � b� which stands for list
a concatenated with list b� As an example� consider the regular expression
R � �ab�� j a�� de	ned over strings of characters� R de	nes a language that
contains strings formed by either repeating the pattern ab zero or more times
or by repeating a one or more times� Instances of strings in this language are
�� aaa� ab� abab� � denotes the null string and is similar to the Kleene
star and the language de	ned by x� is the language de	ned by x� j �� for any
regular expression x� We can also specify wild cards �or don�t cares� by using
the symbol !� which acts as a placeholder for one symbol� !� matches zero or
more symbols� so !�a matches all strings ending in a� We also use the terms
string and sequence to signify a list composed of immutable characters�
To illustrate the use of these predicates� consider a sample query that

	nds all sub�sequences of a sequence that match a particular pattern a!t!�tg�
Such a query could potentially 	nd use in a genome sequence database� where
we are searching for a particular protein sequence or a gene� The above
query would translate to sub select�a!t!�tg��L� in the query algebra� Sub
select selects all substrings of the list L that match the input pattern� So�
if L � �acctcggagtccccacttg�� then sub select�a!t!�tg��L� would return set
f�agtccccacttg�� �acttg�g� containing the two sub�sequences that match the reg�
ular expression a!t!�tg�
This query can also be expressed in terms of other operators like PL� all

su
x� and all pre	x �subsection ����� This provides the query optimizer with
numerous options for rewriting the query� depending on the cost�e�ectiveness
of the resultant query� The PL operator returns a set of all the possible sub�
lists of the input list� All su
x and all pre	x are specialized forms of the
PL operator� They return maximal substrings �i�e� the portion of the list from
a given point till one of the ends� starting with the pattern or ending with the
pattern respectively� for each occurrence of the pattern� These two operators
are very useful for establishing the position�s� of the pattern in the list as they
are always anchored at one of the end�points� For example�

PL��abc�� � f�a�� �b�� �c�� �ab�� �bc�� �abc�g

all su
x��e!g����abcdefghidefgh�� � f�efghidefgh�� �efgh�g

all pre	x��ef ����abcdefghidefgh�� � f�abcdef �� �abcdefghidef �g

In the next few paragraphs we illustrate some possible query transformations
using the sub select�a!t!�tg��L� query as an example�
One possible way of expressing the same query in terms of PL is�

set select���l� l � L�a!t!�tg���PL�L��

PL�L� returns all the possible substrings of L� We then use the select operator
over sets �aliased to set select to avoid any ambiguity� and the list predicate
to pick the sub�sequences that match the pattern�
Now suppose we already have an index on all the positions of the symbol a

in the sequence L� We could then rewrite the query to take advantage of this

information in the following manner�

apply���l� all pre	x�ba!t!�tg��l���all su
x�a��L��

All su
x takes advantage of the index on the input list L and can therefore
be computed very quickly� Also� the result reduces the positions we need to
check for a match� So� to obtain the 	nal result we need to check if the lists
�in the set of lists obtained by the all su
x operation� start with �denoted
by b� the pattern ba!t!�tg� using the all pre	x operator� All pre	x extracts
the sub�sequences that are in the language de	ned by the regular expression
ba!t!�tg� Similarly� if we had an index on tg� we could rewrite the query as�

apply���l� all su
x�a!t!�tg���l���all pre	x�tg��L��

In a similar manner� we can rewrite the query to take advantage of indices on
both a and tg�

set select���s� s � L�ba!t!�tg���

�apply���l� all su
x�a��l���all pre	x�tg��L���

A slightly more complex strategy can be used if we only have an index for
occurrences of t in L� Assume that the list L is split into two lists L� and
L� such that L�L� � L and L� starts with t �using the index�� So� for each
such split we have to check if the query below is non�empty and in such a case�
return the matching sublist�

set select���l� l � L�!�a!���L�� � set select���l� l � L�t!�tg!����L��

Another interesting case is querying over a set of lists S to check if a par�
ticular pattern a!t!�tg exists in any of the lists� This can be expressed as�

set select���l� l � L�!�a!t!�tg!����S�

As in the earlier examples� we can use any indices for query rewrites� If we
have an index into the set S indicating the lists that contain the symbol t �or
any sub�string of the match pattern�� we could rewrite the above query as�

set select���l� l � L�!�a!t!�tg!��� �set select���s� s � L�!�t!����S��

The 	rst set select uses the index and as a result reduces the input size for
the second set select� We could also use multiple indices in the same way�

set select���l� l � L�!�a!t!�tg!���

�set select���s� s � L�!�t!����S� �

set select���s� s � L�!�g!����S��

��� Tree Predicates

Recall that the standard select operator is de	ned to return a set of nodes
based on the properties of the contents of those nodes� The sub select operator
returns all subtrees of a tree that satisfy a certain property� In other words�

sub select takes connectivity and structure into account while select does
not�
Consider the query �retrieve all the portions of this family tree in which

somebody named a is an ancestor of somebody named b�� In this case we are
searching for any subtree which matches the predicate �somebody named a is
an ancestor of somebody named b�� In the case of lists� similar conditions can
be stated using regular expressions� To extend the standard regular expression
notation to trees� we build on the results of ������� The basic notation is the
same as that of regular expressions� � for Kleene closure� j for union �disjunc�
tion�� and a � b for �a concatenated with b� �we use ab as a shorthand for
a � b�� The only fundamental di�erence is in the meaning of the concatenation
operator� In a regular expression� which always represents a string �i�e�� a total
ordering�� ab simply means that b follows immediately after a� However� a node
in a tree may have more than one successor �child��

Figure "� Multiple concatenation points

Figure �� Result of 	gure "

To introduce our notation� we must remember that there is a clear dis�
tinction between terms that represent trees and terms that represent patterns�
just as there is a di�erence between a regular expression and an actual string�
For example� consider the string �abacdeb� and the regular expression �b�de��
The regular expression matches the substring �bacde� of the 	rst string� As
a simple example of our notation� consider the tree �not pattern� represented
by �a �b c��� This is a tree with �a� at the root� �b� at the left child� and �c�
at the right child� In our notation for trees� a node is followed by ��� then by
its children� then by ���� This corresponds to a preorder listing of the nodes�
We do not consider unordered trees in this section� although most of the ideas
apply there as well�

As another example� consider the tree term T � �a �b �d e� c �f g���� rep�
resenting a full binary tree with three levels� The notation for tree patterns
extends the simple tree notation in a manner similar to the extension made
to strings by regular expressions� In what follows� it should be clear from the
context whether a tree or a pattern is being described by a particular term�
As a simple example� consider the pattern represented by the term �a �b c��� It
matches a subtree of T which is represented by the term �a�bc��� Note that just
as in the matching of substrings to regular expressions� we are not interested
in what follows the matching subtree in T � We are only interested in 	nding
the matching subtree� just as in the above regular expression example we noted
that the matching substring is �bacde�� not �bacdeb�� The sub select operator
is de	ned to return the matching subtrees� not what follows them �see examples
below��
To represent concatenation in a pattern� we use a special symbol to indicate

the concatenation points � the points in the expression where the second term
is to be appended to the 	rst� We 	rst illustrate this graphically and then
describe the algebraic notation� In 	gure " we have two trees� The special
symbol � indicates a concatenation point and must appear at the leaves� The
concatenation of the left and right trees in 	gure " gives the result in 	gure ��
Note that � appears twice in the left tree� The meaning of the concatenation
point is that all occurrences of the concatenation point are to be replaced with
the tree on the right� giving the result in 	gure ��
The union operation on tree patterns is no di�erent from its regular expres�

sion counterpart� The Kleene operator � is based on the concatenation of one
pattern onto itself� any number of times� Thus it also needs to make use of
the notion of concatenation points� As an example� consider a tree with three
nodes� a at the root� b at the left child� and � at the right child� and call it T �
Then some of the elements of T � are shown in 	gure ��

a

b

a

b a

b

a

b a

b a

b

nil

Figure �� Part of a Kleene closure

We now describe the syntax that will enable us to express these patterns
inside an algebraic query� The basic idea is that any concatenation� including
one engendered by �� must be given one or more instances of � as concatenation
points� As an example� the concatenation of the trees of 	gure " is described
as follows in our syntax� where square brackets are used for grouping�

��a �b �� f � ��� �c �d e ���

Only a node together with all of its children may be the subject of concatenation

or �� The trees in 	gure � are a subset of

�a �b � ���

Let us examine a more complicated example of concatenation� Consider the
following pattern�

��a �� � �� � �cjd� �e f���

Formally� the result of a concatenation is de	ned as the set of all trees formed by
replacing every � in every tree matching the 	rst pattern with a tree matching
the second pattern� Not every � need be replaced by the same tree from the
second set� but every � must be replaced by one of them� Figure �
 shows two
of the four trees that satisfy the previous pattern�

e e e ef f f f

a a

c c cd

Figure �
� Two concatenations of �a�� ��� ��c j d��e f��

The symbol ! indicates that the contents of a node can be anything� Thus
a pattern with any value at the root and the values b and c as the left and right
children� and no other nodes� would be expressed as

�! �b c ��

This ! symbol� however� stands only for any possible contents of a node� not
for any possible subtree� In other words� ! represents a tree with one node�
whose contents are unknown� An important special case of tree patterns are
those in which we are only interested in the structure of the tree �"�� not in the
contents of the nodes� The ! symbol makes such patterns easy to express in
our notation� To represent the most general tree pattern� which will match any
tree at all� we need an analog to the �!�� of regular expressions� We de	ne the
symbol T ! to stand for any binary tree as follows�

T! � �!�� ����

Now we present some examples of queries that select from some tree T
all subtrees matching a given pattern� Recall that sub select returns exactly
the subtree�s� matching the pattern� and does not return descendants of those
subtrees� As a realistic application� consider a relational query optimizer which
represents queries as trees� All operators are unary or binary� and to simplify
the presentation we will ignore additional parameters� Given some query tree
Q� the followingAQUA algebra expression returns all subtrees ofQ representing
a join whose left input is also a join�

sub select�join �join !���Q�

We do not specify the children of the inputs to the 	rst join because this query
is intended to return only the portion of the tree with this structure� not any
of its children�
Now consider a query to retrieve all subtrees of Q representing a join whose

left input contains a selection somewhere in it�

sub select�join ���! ��� !� j �! ����� select� !���Q�

The disjunction ensures that any subtree containing a selection will match the
pattern� Intuitively� it ensures that any number of left and right �turns� leading
to a selection will qualify�
In these examples we have been assuming very simple node contents � im�

mutable strings� However� the syntax easily accommodates arbitrarily complex
node contents� Any algebraic expression which evaluates to something of the
appropriate type can be used to specify the contents of a node inside a tree
pattern� It would also be possible to de	ne an extended version of sub select
which takes an additional parameter indicating an algebraic expression to be
applied to each node� The result of this expression� rather than the actual
node� could then be matched against the pattern�
The sub select operator can clearly 	nd all occurrences of any tree pat�

tern inside any tree� However� there are other ways of expressing the same
queries� We now use the PT and all desc operators to de	ne alternative ways
of expressing some queries�
The PT �powertree� operator takes a tree T and returns all subtrees of

T � The de	nition of �subtree� is analogous to the de	nition of �substring��
All desc �r� �T � retrieves all subtrees of T which start with the pattern r and
include all descendants of that occurrence of r�
One motivation for the all desc operator can be illustrated by the following

example� Consider the tree T of 	gure �� and the query�

sub select�e �a b���T �

This query can be rewritten using all desc as follows�

collapse�apply���s� sub select�e �a b���s�� �all desc�e��T ���

This version of the query 	rst 	nds all subtrees of T whose root contains simply
�e� and whose descendants go as far down T as possible� The query then 	nds
all subtrees of each of these subtrees that have �a� and �b� as the children of
�e��
This query might be �cheaper� when we have an index that will return all

nodes containing �e�� In that case� the all desc operation makes direct use of
the index to compute its result� The sub select operations� in this case� will
only be examining subtrees with the proper root node� Assuming the situation
of 	gure ��� in which there may be thousands of nodes in the outlined region
R� none of which contain �e�� the processing time for the query is potentially
orders of magnitude faster than in the initial version� Note that the rewriting
used above does not always result in a more e
cient execution of the query�
even if an index is used� For example� if �e� occurred many times in the same
large subtree� many copies of parts of that subtree would be returned� resulting
in a potentially longer search than with the original sub select query�

a

a a

b

b b

c

e g

No occurrences of ’e’ or ’a’

R

Figure ��� A large tree

Suppose now that we have available an index which provides fast access
to all nodes containing �e� that also have �a� as their 	rst child� A similar
rewriting of the query can facilitate the use of such an index�

collapse�apply���s� sub select�e �a b���s�� �all desc�e �a !���T ���

In this case� the index is even more restrictive� leaving even less work for the
expensive �sub select� portion of the query�
AQUA also provides an all anc operator� which travels up the tree in the

way that all desc travels down the tree� In other words� all anc �r� �T � will
retrieve a set containing all occurrences of r in T alongwith their paths from
the root to r� We omit a complete description of all anc here due to space
limitations�

� Conclusions and Future Work

This paper has described the support for ordered bulk data types provided
by the AQUA data model and algebra� The primary ordered bulk type is a
graph� from which we derive trees and lists by imposing constraints on the
edge set� Uniqueness of tree and list nodes is enforced using the Cell type
constructor� Important aspects of AQUA�s ordered bulk type support are the
consistency of operators and semantics among the various ordered types and
the close relationship between graphs and sets� resulting in a very uniform data
model�
We have further described a simple predicate language for lists and trees

that supports queries that depend on order� This formalism is based on regular
expressions� but could be extended to more expressive pattern languages such
as context�free grammars�
Current and future research includes investigation of additional operators

on ordered bulk types �e�g� LFP� as described in ���� and implementation

techniques for indexing over ordered bulk types� We are presently looking
at ways to extend our tree pattern language to work with DAGs� Indexable
ordered types in AQUA �such as N�dimensional arrays� will be discussed in a
future paper�

Acknowledgments

We would like to thank Catriel Beeri� Gail Mitchell� Arnold Rosenberg� and
Sairam Subramanian for useful discussions�

References

��� Catriel Beeri and Yoram Kornatzky� �Algebraic Optimization of Object�
Oriented Query Languages�� Proceedings of the International Conference
on Database Theory ����
�� "�����

��� James C� French� Anita K� Jones� and John L� Pfaltz� �Summary of the
Final Report of the NSF Workshop on Scienti	c Database Mgmt��� SIG�
MOD Record �� ����
�� ����
�

��� Karen A� Frenkel� �The Human Genome Project and Informatics�� Com�
munications of the ACM �� ������� ������

��� Johann C� Freytag� �Tree Acceptors and Some of their Applications��
Journal of Computer and System Sciences � ���"
�� �
������

��� Seymour Ginsburg and XiaoyangWang� �Pattern Matching by Rs�Opera�
tions� Towards a Uni	ed Approach to Querying Sequenced Data�� Pro�
ceedings of the ��th ACM Principles of Database Systems ������� ����
�

�

��� Ralf HarmutG#uting� Roberto Zicari� and David M� Choy� �An Algebra for
Structured O
ce Documents�� ACM Transactions on O�ce Information
Systems " ������� ������"�

�"� R� Karp� R� Miller� and A� Rosenberg� �Rapid Identi	cation of Repeated
Patterns in Strings� Trees� and Arrays�� Proc� �th Annual ACM Sympo�
sium on Theory of Computing ���"��� ��������

��� Eric S� Lander� Robert Langridge� and Damien M� Saccocio� �Mapping
and Interpreting Biological Information�� Communications of the ACM
�� ������� ������

��� Theodore W� Leung� Gail Mitchell� Bharathi Subramanian�Bennet Vance�
Scott L� Vandenberg� and Stanley B� Zdonik� �The AQUA Data Model
and Algebra�� Proc� �th Intl� Workshop on Database Programming Lan�
guages �������

��
� Joel Richardson� �Supporting Lists in a Data Model �A Timely Ap�
proach��� Proceedings of the ��th VLDB Conference �������

���� J� W� Thatcher and J� B� Wright� �Generalized Finite Automata The�
ory with an Application to a Decision Problem of Second�Order Logic��
Mathematical Systems Theory � ������� �"����

���� Scott L� Vandenberg and David J� DeWitt� �Algebraic Support for Com�
plex Objects with Arrays� Identity� and Inheritance�� Proceedings of the
SIGMOD Intl� Conference on Management of Data ������� ������"�

