Ordered Types
in the AQUA Data Model*

Bharathi Subramanian Stanley B. Zdonik
Brown University Brown University
Providence, RI, USA Providence, RI, USA
Theodore W. Leung Scott L. Vandenberg!
Brown University University of Massachusetts
Providence, RI, USA Ambherst, MA, USA

To appear in Proc. 4th Intl. Workshop on
Database Programming Languages, 1993

Abstract

We present a query algebra that supports ordering among the data ele-
ments. Order is defined as a relationship between various data elements
of an instance. This relationship can be a total or partial order among
the elements or among equivalence classes where each equivalence class
consists of one or more elements. In terms of data structures, ordered
types can be viewed as graphs, trees, or lists.

Lately there has been a lot of interest in bulk types like lists, trees,
and graphs that are not supported by traditional data models and query
algebras. This interest is fueled by the fact that much of the data in the
scientific domain is inherently ordered. Therefore, scientific applications
that involve genome sequences, satellite data, scientific data, etc. require
database support for ordered data structures like lists, trees, and graphs.
In this paper, we discuss an extension to the AQUA query algebra to
handle ordered types and their operators. We show how these operators
can fit into a framework for query optimization.

1 Introduction

There are many applications [2,3,8] in which ordered types are required. Sci-
entific applications have a need to store ordered types such as time-series data
and genome sequences, and textual databases store information that is struc-
tured as a tree. These applications store huge volumes of data and must locate
information from these structures very efficiently.

Query languages and algebras support declarative retrieval from a database.
They are based on a set of high-level operations over collections of objects.
These operations hide the looping structure that would be present in an algo-
rithm that executes them. By and large, these operations have been confined

*Partial support for this work was provided by the Advanced Research Projects Agency
under contract N00014-91-J-4052 ARPA order 8225, and contract DAAB-07-91-C-Q518 under
subcontract F41100.

tCurrent address: Computer Science Dept., Siena College, Loudonville, NY 12211

to manipulations of sets. While there has been some recent work on extending
query languages to other bulk types like sequences [5,10], additional research
is needed.

This paper presents an extension to the AQUA (A QUery Algebra) query
algebra [9] to include ordered types like graphs, lists, and trees. N-dimensional
arrays are a topic for future work. We begin by defining algebraic operations
over graphs. Graphs are used as the fundamental building block out of which
the operations for the other types are derived. Sequences and trees are viewed
as specialized graphs. Duplicates are introduced into these graph structures
through a notion of a cell type.

We could argue that graphs and trees could be viewed as nested list struc-
tures, but the onus of maintaining the structure is placed on the user. For
example in a tree structure, the user has to prevent two nodes from pointing to
the same “child” list. Also, viewing trees and graphs as types in their own right
allows us to utilize their specialized properties for query optimization and gives
us more flexibility in defining operations over them. This distinction might also
help in other related areas like specialized storage structures to speed access
and specialized index structures for querying.

This paper focuses on an algebraic approach to queries over ordered types.
An order is represented by a graph. Such an order can be restricted further to
produce a tree (i.e., a partial order) or a list (i.e., a total order).

A goal of this work has been to define the operators on all the bulk types
so that they are consistent with each other. The operations on a more specific
version of a bulk type must follow from the operations on a more general version.
For example, Select for a tree must be the same as Select for a graph when the
tree is viewed as a graph. A graph with an empty edge set is essentially a
set. Thus, this kind of degenerate graph must behave in all ways like a set.
Identities that apply to sets must apply to graphs with no edges as well.

In several cases, an operation on an ordered type will not return an object
of the starting type. We do not view this as a violation of the closure property.
In our view, closure should require that an operation will return an object of
a type within the model. For example, a select over a tree is not guaranteed
to produce another tree; however, it will always produce a list of trees which is
a perfectly good type in the model. Such a result can be composed with other
operators for that type.

This paper first briefly introduces the AQUA data model. Next, it examines
some related work, and then describes our approach to ordered types. This is
followed by a discussion of the specific operators that we support for graphs,
trees, and lists. We close with a few examples of how these operators are used
and some suggestions for future research.

2 AQUA Model

The AQUA query algebra [9] is based on an object-oriented data model. All ob-
jects have 1dentity, and these identities allow us to distinguish between objects
using identity-based equalities.

Equality is essential to the definition of operators like union, intersection
and other comparison-based operators. The default equality is identity, similar
to that for unordered bulk types like sets and multisets. In the case of sets

and multisets, other notions of equality are handled by providing the special
operators group (which creates equivalence classes based on a given equality)
and choose (which picks a member of each class nondeterministically). For
ordered types, the notion of other equalities is simulated by using these equality-
specific set operators on the node and the edge sets.

2.1 Constructing Types

One of the primary goals of the algebra and the model has been to support
a large number of bulk types in a uniform manner. A type constructor is a
metatype which defines a family of types. The Set type constructor defines
the family of types that includes Sei[Int], Set[Department], etc. New types are
created by instantiating the metatype Set/T : Type] with a specific type, like
Int or Department.

AQUA provides the following type constructors: sets, multisets, tuples,
unions, functions, cells, lists, graphs, and trees. The algebra also supports the
abs constructor that allows creation of new abstract types. The operators of
the AQUA algebra are a subset of the methods on the AQUA type constructors
and include operations like select, join, and union.

2.2 Duplicates

All the ordered types are defined as a set of nodes N, and a set of edges E.
However, as in the case of multisets, there are cases when there is a need to allow
duplicates. Duplicate nodes could be handled in a manner similar to multisets
but that would not allow for distinction between edges of two identical nodes.
Thus, we introduce the concept of a cell. A cell can be thought of as a wrapper
around an object that allows us to distinguish between two nodes containing
the same object. With cells, we could have the same object represented as two
different nodes, as the identity of the cells provides the uniqueness.

3 Related Work

Much of the previous work with ordering deals with order as in sequences or
arrays. Beeri and Kornatzky [1] discuss trees in their paper. However, there
is no known work with directed acyclic graphs or graphs, in the domain of
database applications.

Beeri and Kornatzky propose an object-oriented query processing paradigm
where the objects are built of primitive objects, an explicit object identity type
constructor, and bulk type constructors. Then operations and optimizations
are presented, which apply to any bulk type constructor definable in their
paradigm. In this approach, lists, arrays, and trees can all be defined, and a
subset of the useful operations on such structures is described in the paper.
These operations include a “pump” function, which is similar to AQUA’s fold
operation. Since the operations described in [1] are intended to be applicable to
any bulk type, not just to lists and trees, they are too general for our purposes
— we wish to distinguish between ordered and unordered types, and provide a
richer set of operations. Furthermore, many of the operations listed in [1] are
not described precisely, and their existence is assumed. Here we remove that

Figure 1: Select for Lists

assumption. Graphs are not discussed in [1], and it is not clear how (or if) they
would fit into the paradigm presented there.

MDM [10] talks about a query algebra to support lists in an object-oriented
data model. Operators from a discrete, linear-time temporal logic provide the
basis for the algebra. The salient feature of the algebra is the extension of the
predicate language to allow position-dependent queries, which adds a lot more
flexibility to the kind of queries that can be posed to the database. Union and
difference are similar to the corresponding operators in EXTRA /EXCESS [12].
However, the MDM algebra does not provide for operations on trees or graphs.

The NST algebra [6] is specifically designed for structured office documents
and 1s an extension of relational algebra. The data model 1s based on nested
sequences of tuples. It tries to maintain the order of the input lists whenever
possible, with a higher preference for the order of the first input list. For exam-
ple, in union, elements are concatenated and duplicates from the second list are
eliminated. As a result, most of the operators are not commutative. Duplicates
are allowed in lists, however union and intersection eliminate duplicates from
the result set. A tree-like structure in a document (paragraphs under sections)
is handled by treating it as a nested sequence of sequences.

Rs-operations [5] are sequence operations that are based on pattern match-
ing. Along with these operations, sequence logic (SL), which is a first-order
logic, is also introduced. Ginsburg and Wang define a set of powerful oper-
ations based on regular expressions, which act as a kind of template for the
operation. However, the paper does not mention how these operations can be
extended to trees. Also, the authors do not specify how these operations fit
into a query optimization scheme.

The EXTRA/EXCESS system [12] contains an array type constructor; ar-

rays can be fixed- or variable-length and can contain entities of any EXTRA
type. The elements of an array are accessed using their array indices, but there
is no ability to traverse from one element to another in these arrays. Operators
are provided for extraction of elements and subarrays, for creating and con-
catenating arrays, and for applying a function to all elements of an array. The
system provides no support for lists, trees, or graphs, and multidimensional ar-
rays are constructed as arrays of arrays. Thus the arrays of EXTRA/EXCESS
bear more resemblance to AQUA’s N-dimensional arrays (which will be dis-
cussed in a future paper) than to the structures described in this paper.

4 Ordered Types

In this section, we describe ordered bulk types and the operations on them.
Order in our setting is a mechanism to specify a “precedes” or “follows” re-
lationship between pairs of elements. In its most general form, this kind of
relationship can be represented as a graph, where elements are represented as
nodes of the graph and edges between elements represent explicit precedence
relationships. “Precede” is an antisymmetric relation, i.e. if a precedes b and b
precedes a, then a and b are equivalent. As a parallel, strongly-connected com-
ponents in graphs (a strongly connected component is one in which all nodes
are reachable from each other) could be viewed as an equivalence class. In a
sense, all nodes in the strongly-connected component are reachable from the
same set of nodes in the graph and are equivalent for reachability queries.

Graphs form the basis for our definition of ordered types. Lists and trees are
specialized forms of graphs. Besides the obvious restriction that the underlying
structure be a tree (or a list), we impose an additional constraint of transitivity.
In other words, if there is a directed path ag, ay,- -, a, in the tree (list), we
assume that there is an implicit edge between ay and a,. Note that these
implicit edges are not actually present in the tree structure. To see why this
transitivity assumption is natural when viewing lists, consider selecting birds
from a list of animals A = [cat crow mouse sparrow dog robin parrot] (Figure 1).
Treating list A as a graph would give us a set of graphs instead of a list . Most
of us would expect the select to return [crow sparrow robin parrot].

However, note that the edges between crow and sparrow & sparrow and
robin did not exist in the original list though they are there in the ezpected
result. The implicit assumption here is that the relationship between the ele-
ments is transitive. A similar example can be used to show that transitivity
1s a natural assumption for trees as well. Note that the transitivity property
ensures that the resultant type is the same as the input type (Lists — Lists
and Trees — Trees or a set of Trees). As a result of this property, the behavior
of the operators for graphs is slightly different than that for lists and trees.

Sets in the AQUA model are at the other end of the spectrum; they can
be viewed as the most unordered form of graphs, as sets can be represented as
graphs with empty edge sets. We explore this connection in greater detail in
section 5.4.

1 Assuming we ignore the typing issues for the moment.

4.1 Graphs

Graphs are defined as a set V of nodes, and a set F of directed edges between
the nodes. An edge is defined as a pair of nodes and the direction of the edge
is from the first node to the second.

The type constructor for graphs is defined as Graph[T], which constructs a
graph type consisting of objects of type 7' as the nodes. FEdges in the graph
are tuples consisting of a pairs of nodes of type 7. As mentioned earlier, this
definition does not allow duplicate objects as nodes. Duplicates are handled
by using a graph of type Graph[Cell[T]]. Since this is used later, while defining
type conversion operators on trees and lists, we use the term “cell-graphs” to
refer to such graphs. Graphs, like sets and multisets, do not participate in
sub-typing.

4.2 Trees and Lists

Trees and lists are also defined as a set V' of nodes, and a set (or a list in
the case of ordered trees) E of directed edges between the nodes. However,
the underlying structure of a tree (list) instance must be a tree (or a list).
Assuming edges are directed away from the root, this implies that a tree must
have one node with no incoming edges and all other nodes must have a single
parent (or incoming edge). For a list, there must be one node with no incoming
edge and a node with no outgoing edge (except for the empty list). All other
nodes in a list must have one incoming edge and one outgoing edge.

The AQUA model supports two kinds of trees, ordered- and unordered-trees.
Ordered-trees are trees where there is an order between the children of a node
and unordered-trees assume that there is no explicit order between the children.
Ordered-trees are defined as a set V of nodes and a list F' of directed edges (as
opposed to a set of directed edges for unordered-trees). The relative ordering
among the edges from the parent node to the child node in the list £ determines
the order of the children nodes.

A tree (or list) of type T consists of nodes of type Cell[T] and the edges
between these nodes. The node typing is different from that of graphs, where
the nodes are of type 7. We do this since it allows us to handle duplicates in a
consistent manner. Duplicates in trees and lists present a problem when dealing
with operators that could possibly map two or more nodes of the original tree
onto the same object. In such a scenario, preserving all the associated edges
might violate the tree (or list) structure. As a result, we adopt the “cell”
structure to avoid duplicate nodes.

The type constructor for trees is defined as Tree[T], which is a tree type
consisting of nodes of the same type Cell[T] and edges between these nodes.
The type constructor for lists is similar, List[T]is a list type consisting of nodes
of type Cell[T] and their associated edges. Lists and trees do not participate
in subtyping.

5 Operators

In this section, we describe in detail the various operations on graphs, trees
and lists. The functionality of most operators is similar across all the ordered

types. The syntax of the operations is similar to that used in AQUA[9], and is
based on lambda calculus.

Predicates are functions with boolean return type, and are composed using
AQUA’s built-in operators and its term language (which is based on lambda
calculus). Predicates are passed as parameters to operators like select.

Cells have two operators: Cell(a) creates a cell containing a. Cell_con-
tent(c) returns the object contained in cell e.

5.1 Graphs

In this subsection we describe the operators on graphs. Table 1 details all the
operator definitions. We now describe some of the notation used in the table.
The input graphs are G = (Vg, Fg) and H = (Vr, Eg) and the output graph
is R = (Vr, Eg). Individual nodes are denoted by lowercase letters, with the
graph name as a subscript (for example, ug, v, £g). Predicates are indicated
by p and f represents a function.

The primary query operators are select, apply, union, and intersect.
Both union and intersect use the default equality for unioning (or intersect-
ing) the node and edge sets. Im_ancestor and im_descendant are the traver-
sal operators. The algebra also defines other support operators like nodes and
edges along with update operators like add node, add_edge, and delete_-
edge. The algebra also has conversion operators to convert from a graph (of
the appropriate structure) to a tree or a list.

Figure 2: Flight graph for Airlinel

As an example, consider an airline company, Airlinel. They have a large
number of airports out of which they operate, with flights connecting them (fig-
ure 2). In our graph, the nodes represent the airports and the edges represent
the flights between the airports. The nodes are assumed to have more details
about the airports, besides their city names.

type Airport = abs(Tuple[city : String, ...]
city(Airport) — String,;

sioyerod() ydeir) :1 oa[qey,

(7 5 (o2 DU om)] (27 5 (92 52)[(9)] jworan = 17 ozorgn

_ = ‘O opouooerdoa
(0) (P oot o10pp) fjoporppe) (i)sofpoppe = (D) Pr)opowoouid
(s Pqmip =47 PA) = (9)()soSpooop
({(PA 3 Pa'Pn) v (¢ 3 (Pa'Dn))|(Pa'Pn)} O juotun = Uy é\: = (9)(g)soSpoppe
AA@AUQ “U&vw AAU& f@ﬁvvaOmﬁz “Umﬂvmm:u =4y QUHW “U\:mm:v — v — AUXU vwﬁoqwew—wﬁ
(P ‘({x} 4)uorun = W = be Jopou ppe

(77 P Jworan [(Fa)] ot = H7 (1) Jaoran =

)(Ha ‘On)puadde

((Pa“on)pagosuuos <
((PuDw)pagosuuod) v (2 3 (Pa ‘Du) {(Dw ‘On)) pue
(Pa‘On)papoauuod <= (Pa = Dn) A (97 O (Pa9n)) a1oym
{(Pa ‘On)pagosuuos|(Pa‘On)} = Ug ‘D7)

()sansoro7y

As =4y Ha} = m\C = A&vammaw
o = (p)so8pe
o4 = (p)sepou
{973(PxDa)|Pat = (p)syurs
{973(Pa‘Px)|Pal = (r))seoanos
{P7 > (Pa‘dx)|Pa} = (H)(Pz)yuepuadsop ull
{Pg > (Px'oa)|Pa} = (9)(Pz)roysedue urn
((Hg ‘Or7)100saogur = 47 (HA ‘94))o0saajur = m\C = ([‘p)yeesiaur
((Hg Oy)uotun = Yy ‘(HA ‘Op)uomun = ¥4) = (f] ‘H)juomun
({2 3 Paom)|(Pa)f(Pn)[)} = 4q {(Pa)[} =¥44) = (9)(f)41dde
([v () v (54 5 (Fa) (a i)} = g *[(Pa)]a) =51) = (5)(daopos

suonuya(J

)
type Airline = Graph[Airport]

Our query is to find all the places that have a direct flight to Boston, either
by Airlinel or Airline2. The basic query is to get all the i _ancestors of the
node Boston in the combined airline map, TwoAirlines. The combined airline
map is obtained by unioning the maps of Airlinel and Airline2.

TwoAirlines = union(Airlinel, Airline2)

DirectToBoston = im_ancestor(choose(nodes(select(A(n) n.city = Boston)
(TwoAirlines))))
(TwoAirlines)

5.2 Trees

In this section, we briefly describe the operators on trees. Most of the tree
operators have been derived from the corresponding graph operators, so in the
following paragraphs we shall highlight the differences between the correspond-
ing graph and tree operators. We discuss the operators for ordered-trees below;
operators for unordered-trees follow logically from the ordered-tree operators.
Therefore, for the sake of simplicity we use the short-form “tree” to refer to
ordered-trees. Also, in all our examples we assume that all edges are directed
away from the root of the tree.

The basic tree operators in AQUA are: select (p) (T), apply (f) (7),
sub_select (r) (T), PT (7)), all.desc (r) (T), all.anc (r) (T), sources
(T), sinks (7)), nodes (T'), edges (T), e_edges (T), im_ancestor (z)(T),
im_descendant (z) (7), tree (z), and find_path (z) (7). The update op-
erators are: append (from_node, sibling) (Ty, T2), add_node (z, parent,
sibling) (T), deletenode (z) (T), replace node (x, y) (T), and a number
of conversion operators to go from a tree to a graph or a list.

Note that some functions are defined only on graphs: union, intersect,
t_closure, add_edges and delete_edges. This is mainly because the result
of these operations will not be a tree (the resultant structure will be a graph).
However, the functionality of the operators can be obtained by converting the
input trees to graphs and applying the corresponding graph operators. For
example, union on two trees with common nodes might produce a graph due
to unioning the edge sets of the common nodes from the two input trees. This
operation however, can be performed by “converting” trees to graphs.

The main differences between the other tree operators and their correspond-
ing graph operators are:

e The children of a node in a tree are ordered. As a result, the opera-
tors return a list of nodes or sub-trees instead of a set. For example,
sources(7T), sinks(7), im_ancestor(z)(7), and im_descendant(z)(7T)
are similar to the corresponding graph operators, except that the result
is a list of nodes. So, source returns a singleton list consisting of the
root of the tree, sinks returns a list consisting of all the leaves of the
tree, im_ancestor returns a list containing the parent of the given node

Figure 3: Select on a tree

in the tree and i1m_descendant returns a list of all the children of the
given node, in order.

The edges of a tree are transitive. Therefore, edges operator returns a
list containing all the edges of the tree — this includes the edges that
were explicitly added to the tree and the edges that were “created”
due to the transitive property of the edges. The e_edges operator, in
contrast, returns a list containing only the edges that were explicitly
added to the tree. For example, edges on the tree rooted at 5 (figure
3) would return [{5,8},{5,9},{8,13}, {5, 13}] and e_edges would return
[{5,8},{5,9},{8,13}]. This property also influences any operator that
“deletes” nodes (select and delete node). Deletion of a node causes
an implicit edge, i.e. an edge created due to transitivity, to become an
explicit edge which can be loosely thought of as the edges used to draw
the tree. So, if we just look at explicit edges, a deletion causes addition
of new edges (from the list of all edges) between the the parent and the
children nodes of the deleted node (Figure 4).

Select(p)(T) selects a list of sub-trees of tree T', based on the nodes that
satisfy predicate p. All the edges between selected nodes from the input
tree are present in the resultant graph. Any new edges “created” due
to the transitivity relationship between the nodes are also added in the
resultant tree (Figure 3). The ordering in the resultant list is based on
the relative ordering of the roots of each tree in the list. For example, in
figure 3, the tree with node 5 as the root comes “before” the tree rooted
at node 3, in spite of the difference in levels. The ordering is mainly based
on position — if sub-tree A is to the left of sub-tree B (assuming ordering
is from left to right), then A is followed by B in the resultant list. It is a
kind of depth-first ordering. The sub-trees in the list are ordered based
on the relative order in which the respective roots of the sub-trees are
visited in a depth-first traversal.

For certain operators, there are certain constraints on their behavior, as
the result has to be a tree. For example, add_node adds a node and an

edge connecting the node to the tree (at the specified point).

TR &

-
Figure 4: Deletion in a tree

In the case of append, the to_node is always the root of the second
tree, hence it is not a parameter to the operator. Append (from_node,
sibling) (Ty, T2) appends tree T} to tree Ty, as a child of the from._-
node, after the sub-tree rooted at sibling (which is also a child of the
from_node). If sibling is not specified, the tree Ty is added as the first
child of the from_node.

e Trees of type T are composed of cells that contain objects of type T
As a result, most function applications deal with the contained-object
instead of the cell. So, as in the case of apply on a graph, apply on trees
transforms the “contained-object” based on the parameter function f.

Apply(f)(T) applies the function f to the “content” of each cell (node)
of the tree to transform the existing object into a new object. The edge-
set remains the same. This ensures that the basic structure of the tree
is not modified. The resultant tree is built of new cells that contain the
transformed objects (Figure 5).

Other operators that are specific to trees are: Tree(x) creates a tree that
consists of node #. Find_path(z)(T) returns a list of nodes encountered on the
path from the root of the tree T to the node x. The last node of the resultant
list is #, and the first node is the root of the tree. Sub_select(r)(T) returns
a set of all sub-trees of tree T' that match the pattern . The PT(T') operator
(powertree) takes as input a tree T and returns a set of all sub-trees of 7.
This operator 1s somewhat similar in spirit to the power-set operator for sets
and is used primarily for defining other more specific operators. For example,
sub_select can be expressed as:

sub_select(r)(T) = set_select(A(x) x € L(r))(PT(T))

PT generates a set of all subtrees of 7' and set_select (select over a set)
selects those subtrees that are in the tree language defined by the tree regular
expression r (£(r)). All_.desc(r)(T') and all_anc(r)(7T") are specialized cases of
the PT operator that extract all maximal subtrees of T' that start (all_desc)

or end (all_anc) with the pattern r. Specification of the match pattern r is
discussed in detail in subsection 6.2.

O O
OO0 O0O=g o O

Figure 5: Apply(A(z) A)(T)

Replace node and nodes are similar to the corresponding operators in
graphs. The only difference is due to typing of the input and the output. For
example, nodes on a tree returns a set containing all the nodes of the tree,
similar to nodes for graphs. However, the tree-nodes are cells unlike graph-
nodes which are objects.

5.8 Lists

In this section, we discuss operations on lists. These operators are almost
identical to the corresponding operators on trees, except for the input and
output types which are lists instead of trees, and the absence of the “sibling”
parameter. Any kind of add operation in trees requires a sibling parameter,
that specifies the node after which the new node/sub-tree must be added. This
is needed for trees as the children of a node are ordered. In the case of a
list however, since there is only one child for every node, this parameter is
unnecessary.

——

Figure 6: Add_node and Delete_node on a list

Select (p) (L), apply (f) (L), sub_select (r) (L), PL (L) (similar to PT),
all_suffix (r) (L) (similar to all_desc), all_prefix (r) (L) (similar to all_anc),
nodes (L), edges (L), e_edges (L), add_node (z, y) (L), replace node (z,
y) (L), deletemode (#) (L), and the conversion operators are similar to the
corresponding unordered tree operators. List predicates are discussed in greater
detail in subsection 6.1. Add_node in a tree does not involve deletion of any
existing edges, however, in the case of lists adding a node in the middle of the
list might result in deletion of an edge and addition of up to two edges (Figure
6). Source(L), sink(L), im_ancestor (z) (L), im_descendant(z)(L) are
also similar to their equivalent graph operators but they return a single node
for lists instead of a list of nodes as in trees. Append(Ly, Ls) is similar to
append in trees and graphs, but the from_node is always the last node of list
L and the to_node 1s the first node of list Ls. This results in a concatenation
of the two input lists.

There are list operators that do not have corresponding tree operators.
List(xz) creates a list with a single element . Sort(f)(L) sorts list L based
on the comparator function f. f is a transitive function that given any two
elements (a,b) from the list L, returns less-than if a should appear before b
in the result list, greater-than if a should appear after & in the result list and
equal-to if a and b are “equal” based on the function f.

5.4 Sets as graphs

The AQUA model supports various bulk types, among them sets and graphs.
Sets can be viewed as graphs with an empty edge set. With this view, all
the operators for graphs neatly transform into the corresponding operators for
sets. For example, union and intersection on graphs with empty edge sets
are similar to these operations on sets. Similarly, apply and select behave
the same way for graphs with an empty edge set, as with sets. This makes the
addition of ordered types into the model seamless and consistent with the other
bulk types.

6 Predicates

Ordered bulk types, unlike sets and multisets, have the notion of “position” of
the constituent objects. This opens up possibilities of having a more powerful
predicate language. The remainder of this section describes a richer set of
predicate formers for lists and trees.

This investigation was motivated by the observation that query optimization
is facilitated by identities that allow us to break a predicate into pieces, some of
which can be evaluated cheaply. These pieces must be composable to produce
the original query. We give examples of this type of decomposition in the
context of our pattern-based predicate languages.

6.1 List Predicates

In this subsection we discuss order-based predicates for lists. These predicates
are based on regular expressions (for describing match patterns) and lambda

calculus. However, we do envisage a more user-friendly interface that would
translate user-defined queries to algebra queries based on regular expressions.

We use the standard notations for specifying regular expressions — “(” and
“)” are used for specifying precedence, | for disjunction (union), * for Kleene
star, o for concatenation, ~ to mark the beginning of the list, and $ to mark
the end of the list. We use ab as a shorthand for a o b, which stands for list
a concatenated with list 5. As an example, consider the regular expression
R = (ab)* | a¥, defined over strings of characters. R defines a language that
contains strings formed by either repeating the pattern ab zero or more times
or by repeating a one or more times. Instances of strings in this language are
@, aaa, ab, abab. @ denotes the null string and + is similar to the Kleene
star and the language defined by z* is the language defined by x| @, for any
regular expression . We can also specify wild cards (or don’t cares) by using
the symbol 7, which acts as a placeholder for one symbol. 7* matches zero or
more symbols; so 7*a matches all strings ending in a. We also use the terms
string and sequence to signify a list composed of immutable characters.

To illustrate the use of these predicates, consider a sample query that
finds all sub-sequences of a sequence that match a particular pattern a7¢7*tg.
Such a query could potentially find use in a genome sequence database, where
we are searching for a particular protein sequence or a gene. The above
query would translate to sub_select(a?t?*tg)(L) in the query algebra. Sub._
select selects all substrings of the list L that match the input pattern. So,
if L = [accteggagtecceactty], then sub_select(a?t?*tg)(L) would return set
{[agtecccactty], [actig]}, containing the two sub-sequences that match the reg-
ular expression a?t?*tg.

This query can also be expressed in terms of other operators like PL, all_
suffix, and all_prefix (subsection 5.3). This provides the query optimizer with
numerous options for rewriting the query, depending on the cost-effectiveness
of the resultant query. The PL operator returns a set of all the possible sub-
lists of the input list. All_suffix and all_prefix are specialized forms of the
PL operator. They return maximal substrings (i.e. the portion of the list from
a given point till one of the ends) starting with the pattern or ending with the
pattern respectively, for each occurrence of the pattern. These two operators
are very useful for establishing the position(s) of the pattern in the list as they
are always anchored at one of the end-points. For example,

PL([abc]) = {la], [8],[c], [ab], [be], [abe]}
all_suffix([e?g])([abede fghide fgh]) {[efghidefgh],[efgh]}
all_prefix([ef])([abede fghidefgh]) = {[abedef], [abedefghidef]}

In the next few paragraphs we illustrate some possible query transformations
using the sub_select(a?t?*tg)(L) query as an example.
One possible way of expressing the same query in terms of PL is:

set_select(A(])! € L(a?t?"tg))(PL(L))

PL(L) returns all the possible substrings of L. We then use the select operator
over sets (aliased to set_select to avoid any ambiguity) and the list predicate
to pick the sub-sequences that match the pattern.

Now suppose we already have an index on all the positions of the symbol a
in the sequence L. We could then rewrite the query to take advantage of this

information in the following manner:
apply(A(!) all_prefix("a?t7*tg)(1))(all _suffix(a)(L))

All suffix takes advantage of the index on the input list L and can therefore
be computed very quickly. Also, the result reduces the positions we need to
check for a match. So, to obtain the final result we need to check if the lists
(in the set of lists obtained by the all_suffix operation) start with (denoted
by 7) the pattern "a?t?*tg, using the all_prefix operator. All_prefix extracts
the sub-sequences that are in the language defined by the regular expression
“a?t?*tg. Similarly, if we had an index on tg, we could rewrite the query as:

apply(A({) all_suffix(a?t?*t¢$)(!))(all_prefix(tg)(L))

In a similar manner, we can rewrite the query to take advantage of indices on
both a and tg.
set_select(A(s)s € L(TaTt?tg$))
(apply(A(!) all_suffix(a)(!))(all _prefix(tg)(L)))
A slightly more complex strategy can be used if we only have an index for
occurrences of ¢ in L. Assume that the list L is sphit into two lists L; and
Lo such that LiL, = L and L, starts with ¢ (using the index). So, for each

such split we have to check if the query below is non-empty and in such a case,
return the matching sublist.

set_select(A(l)! € L(7"a?))(L1) A set_select(A() ! € L(t7"tg?"))(L2)

Another interesting case is querying over a set of lists S to check if a par-
ticular pattern a?t7*tg exists in any of the lists. This can be expressed as:

set_select(A()] € L(7"at?"tg7"))(S)

As in the earlier examples, we can use any indices for query rewrites. If we
have an index into the set S indicating the lists that contain the symbol ¢ (or
any sub-string of the match pattern), we could rewrite the above query as:

set_select(A(l)! € L(7"aTt?"tg?")) (set_select(A(s)s € L(7"t77))(5))

The first set_select uses the index and as a result reduces the input size for
the second set_select. We could also use multiple indices in the same way:
set_select(A(l)! € L(T a7t tg?™))
(set_select(A(s)s € L(TtT*)(S) N
set_select(A(s)s € L(7"¢7))(9))

6.2 Tree Predicates

Recall that the standard select operator is defined to return a set of nodes
based on the properties of the contents of those nodes. The sub_select operator
returns all subtrees of a tree that satisfy a certain property. In other words,

sub_select takes connectivity and structure into account while select does
not.

Consider the query “retrieve all the portions of this family tree in which
somebody named a is an ancestor of somebody named ”. In this case we are
searching for any subtree which matches the predicate “somebody named a is
an ancestor of somebody named 4”. In the case of lists, similar conditions can
be stated using regular expressions. To extend the standard regular expression
notation to trees, we build on the results of [4,11]. The basic notation is the
same as that of regular expressions: * for Kleene closure, | for union (disjunc-
tion), and a o b for “a concatenated with 6" (we use ab as a shorthand for
aob). The only fundamental difference is in the meaning of the concatenation
operator. In a regular expression, which always represents a string (i.e., a total
ordering), ab simply means that b follows immediately after a. However, a node
in a tree may have more than one successor (child).

A\ 2

Figure 7: Multiple concatenation points

O
e

»/Q KQ
oy
O

Figure 8: Result of figure 7

To introduce our notation, we must remember that there is a clear dis-
tinction between terms that represent trees and terms that represent patterns,
just as there is a difference between a regular expression and an actual string.
For example, consider the string “abacdebd” and the regular expression “b*de”.
The regular expression matches the substring “bacde” of the first string. As
a simple example of our notation, consider the tree (not pattern) represented
by “a(bc¢)”. This is a tree with “a” at the root, “b” at the left child, and “¢”
at the right child. In our notation for trees, a node is followed by “(” then by
its children, then by “)”. This corresponds to a preorder listing of the nodes.
We do not consider unordered trees in this section, although most of the ideas
apply there as well.

As another example, consider the tree term 7' = “a (b(de) ¢ (f g))”, rep-
resenting a full binary tree with three levels. The notation for tree patierns
extends the simple tree notation in a manner similar to the extension made
to strings by regular expressions. In what follows, it should be clear from the
context whether a tree or a pattern is being described by a particular term.
As a simple example, consider the pattern represented by the term “a(be¢)”. Tt
matches a subtree of T which is represented by the term “a(bc)”. Note that just
as in the matching of substrings to regular expressions, we are not interested
in what follows the matching subtree in 7. We are only interested in finding
the matching subtree, just as in the above regular expression example we noted
that the matching substring is “bacde” , not “bacdeb”. The sub_select operator
is defined to return the matching subtrees, not what follows them (see examples
below).

To represent concatenation in a pattern, we use a special symbol to indicate
the concatenation points — the points in the expression where the second term
is to be appended to the first. We first illustrate this graphically and then
describe the algebraic notation. In figure 7 we have two trees. The special
symbol A indicates a concatenation point and must appear at the leaves. The
concatenation of the left and right trees in figure 7 gives the result in figure 8.
Note that A appears twice in the left tree. The meaning of the concatenation
point 1s that all occurrences of the concatenation point are to be replaced with
the tree on the right, giving the result in figure 8.

The union operation on tree patterns is no different from its regular expres-
sion counterpart. The Kleene operator * is based on the concatenation of one
pattern onto itself, any number of times. Thus it also needs to make use of
the notion of concatenation points. As an example, consider a tree with three
nodes, a at the root, b at the left child, and A at the right child, and call 1t 7.
Then some of the elements of T™ are shown in figure 9.

S & @
Figure 9: Part of a Kleene closure
We now describe the syntax that will enable us to express these patterns
inside an algebraic query. The basic idea is that any concatenation, including
one engendered by * must be given one or more instances of A as concatenation

points. As an example, the concatenation of the trees of figure 7 1s described
as follows in our syntax, where square brackets are used for grouping:

[la @ (X F)N][e(d e)]]

Only a node together with all of its children may be the subject of concatenation

or *. The trees in figure 9 are a subset of

[a (b X))
Let us examine a more complicated example of concatenation. Consider the

following pattern:
[la (A M)} {eld] (e H]]

Formally, the result of a concatenation is defined as the set of all trees formed by
replacing every A in every tree matching the first pattern with a tree matching
the second pattern. Not every A need be replaced by the same tree from the
second set, but every A must be replaced by one of them. Figure 10 shows two
of the four trees that satisfy the previous pattern.

Figure 10: Two concatenations of [a(A A)] [[c] d](e)]

The symbol 7 indicates that the contents of a node can be anything. Thus
a pattern with any value at the root and the values b and ¢ as the left and right
children, and no other nodes, would be expressed as

[7(6 ¢)]

This 7 symbol, however, stands only for any possible contents of a node, not
for any possible subtree. In other words, 7 represents a tree with one node,
whose contents are unknown. An important special case of tree patterns are
those in which we are only interested in the structure of the tree [7], not in the
contents of the nodes. The 7 symbol makes such patterns easy to express in
our notation. To represent the most general tree pattern, which will match any
tree at all, we need an analog to the “7*” of regular expressions. We define the
symbol T'7 to stand for any binary tree as follows:

7 = 2(A M)

Now we present some examples of queries that select from some tree T'
all subtrees matching a given pattern. Recall that sub_select returns exactly
the subtree(s) matching the pattern, and does not return descendants of those
subtrees. As a realistic application, consider a relational query optimizer which
represents queries as trees. All operators are unary or binary, and to simplify
the presentation we will ignore additional parameters. Given some query tree
@, the following AQUA algebra expression returns all subtrees of () representing
a join whose left input 1s also a join:

sub_select(join (join 7))(Q)

We do not specify the children of the inputs to the first join because this query
is intended to return only the portion of the tree with this structure, not any
of its children.

Now consider a query to retrieve all subtrees of () representing a join whose
left input contains a selection somewhere in 1it:

sub_select(join ([[7[(A7)] (7 M)]]" select] H)(Q)

The disjunction ensures that any subtree containing a selection will match the
pattern. Intuitively, it ensures that any number of left and right “turns” leading
to a selection will qualify.

In these examples we have been assuming very simple node contents — im-
mutable strings. However, the syntax easily accommodates arbitrarily complex
node contents. Any algebraic expression which evaluates to something of the
appropriate type can be used to specify the contents of a node inside a tree
pattern. It would also be possible to define an extended version of sub_select
which takes an additional parameter indicating an algebraic expression to be
applied to each node. The result of this expression, rather than the actual
node, could then be matched against the pattern.

The sub_select operator can clearly find all occurrences of any tree pat-
tern inside any tree. However, there are other ways of expressing the same
queries. We now use the PT and all_desc operators to define alternative ways
of expressing some queries.

The PT (powertree) operator takes a tree 7' and returns all subtrees of
T. The definition of “subtree” is analogous to the definition of “substring”.
All desc (r) (T) retrieves all subtrees of T which start with the pattern r and
include all descendants of that occurrence of r.

One motivation for the all_desc operator can be illustrated by the following
example. Consider the tree T of figure 11 and the query:

sub_select(e (a 6))(T)
This query can be rewritten using all_desc as follows:

collapse(apply(A(s) sub_select(e (a b))(s)) (all_desc(e)(T)))

This version of the query first finds all subtrees of T" whose root contains simply
“e” and whose descendants go as far down 7" as possible. The query then finds
all subtrees of each of these subtrees that have “a” and “b” as the children of
((677 .

This query might be “cheaper” when we have an index that will return all
nodes containing “e”. In that case, the all_desc operation makes direct use of
the index to compute 1ts result. The sub_select operations, in this case, will
only be examining subtrees with the proper root node. Assuming the situation
of figure 11, in which there may be thousands of nodes in the outlined region
R, none of which contain “e”, the processing time for the query is potentially
orders of magnitude faster than in the initial version. Note that the rewriting
used above does not always result in a more efficient execution of the query,
even if an index 1s used. For example, if “¢” occurred many times in the same
large subtree, many copies of parts of that subtree would be returned, resulting

in a potentially longer search than with the original sub_select query.

No occurrencesof '€’ or’'d

Figure 11: A large tree

Suppose now that we have available an index which provides fast access
to all nodes containing “e¢” that also have “a” as their first child. A similar
rewriting of the query can facilitate the use of such an index:

collapse(apply(A(s) sub_select(e (a b))(s)) (all_desc(e (a 7))(T)))

In this case, the index is even more restrictive, leaving even less work for the
expensive (sub_select) portion of the query.

AQUA also provides an all_anc operator, which travels up the tree in the
way that all_desc travels down the tree. In other words, all_anc () (7)) will
retrieve a set containing all occurrences of r in T alongwith their paths from
the root to r. We omit a complete description of all_anc here due to space
limitations.

7 Conclusions and Future Work

This paper has described the support for ordered bulk data types provided
by the AQUA data model and algebra. The primary ordered bulk type is a
graph, from which we derive trees and lists by imposing constraints on the
edge set. Uniqueness of tree and list nodes 1s enforced using the Cell type
constructor. Important aspects of AQUA’s ordered bulk type support are the
consistency of operators and semantics among the various ordered types and
the close relationship between graphs and sets, resulting in a very uniform data
model.

We have further described a simple predicate language for lists and trees
that supports queries that depend on order. This formalism is based on regular
expressions, but could be extended to more expressive pattern languages such
as context-free grammars.

Current and future research includes investigation of additional operators
on ordered bulk types (e.g. LFP, as described in [9]) and implementation

techniques for indexing over ordered bulk types. We are presently looking
at ways to extend our tree pattern language to work with DAGs. Indexable
ordered types in AQUA (such as N-dimensional arrays) will be discussed in a
future paper.

Acknowledgments

We would like to thank Catriel Beeri, Gail Mitchell, Arnold Rosenberg, and
Sairam Subramanian for useful discussions.

References

(1]

[10]

[11]

Catriel Beeri and Yoram Kornatzky, “Algebraic Optimization of Object-
Oriented Query Languages,” Proceedings of the International Conference

on Database Theory (1990), 72-83.

James C. French, Anita K. Jones, and John L. Pfaltz, “Summary of the
Final Report of the NSF Workshop on Scientific Database Mgmt.,” SIG-
MOD Record 19(1990), 32-40.

Karen A. Frenkel, “The Human Genome Project and Informatics,” Com-

munications of the ACM 34(1991), 41-51.

Johann C. Freytag, “Tree Acceptors and Some of their Applications,”
Journal of Computer and System Sciences 4(1970), 406-451.

Seymour Ginsburg and Xiaoyang Wang, “Pattern Matching by Rs-Opera-
tions: Towards a Unified Approach to Querying Sequenced Data,” Pro-
ceedings of the 11th ACM Principles of Database Systems (1992), 293—
300.

Ralf Harmut Guting, Roberto Zicari, and David M. Choy, “An Algebra for
Structured Office Documents,” ACM Transactions on Office Information

Systems 7(1989), 123-157.

R. Karp, R. Miller, and A. Rosenberg, “Rapid Identification of Repeated
Patterns in Strings, Trees, and Arrays,” Proc. 4th Annual ACM Sympo-
sium on Theory of Computing (1972), 125-136.

Eric S. Lander, Robert Langridge, and Damien M. Saccocio, “Mapping
and Interpreting Biological Information,” Communications of the ACM
34(1991), 33-39.

Theodore W. Leung, Gail Mitchell, Bharathi Subramanian, Bennet Vance,
Scott L. Vandenberg, and Stanley B. Zdonik, “The AQUA Data Model
and Algebra,” Proc. 4th Intl. Workshop on Database Programming Lan-
guages (1993).

Joel Richardson, “Supporting Lists in a Data Model (A Timely Ap-
proach),” Proceedings of the 18th VLDB Conference (1992).

J. W. Thatcher and J. B. Wright, “Generalized Finite Automata The-

ory with an Application to a Decision Problem of Second-Order Logic,”
Mathematical Systems Theory 2 (1968), 57-81.

[12] Scott L. Vandenberg and David J. DeWitt, “Algebraic Support for Com-
plex Objects with Arrays, Identity, and Inheritance,” Proceedings of the
SIGMOD Intl. Conference on Management of Data(1991), 158-167.

