The AQUA Data Model and Algebra®

Theodore W. Leung Gail Mitchell
Brown University Brown University
Providence, USA Providence, USA

Bharathi Subramanian Bennet Vance
Brown University Oregon Graduate Institute
Providence, USA of Science & Technology

Oregon, USA
Scott L. Vandenberg? Stanley B. Zdonik
University of Mass. at Amherst Brown University
Ambherst, USA Providence, USA
Abstract

This paper describes a new object-oriented model and query algebra that
will be used as an input language for the query optimizers that are being
built as a part of the EREQ project. The model adopts a uniform view
of objects and values and separates syntactic, semantic, and implementa-
tion concerns. The algebra addresses issues of type-defined equality and
duplicate elimination as well as extensions to bulk types other than sets.

1 Introduction

Recently, a great deal of work has been done on the topic of object-oriented
query algebras [29, 24, 12] and the modeling of bulk types [4, 27, 21]. These
proposals, as well as those of other researchers on the topic, have explored some
of the fundamental issues and provided the starting point for the work reported
here. AQUA (A QUery Algebra) is the result of a joint effort among researchers
who have participated in the design of previous algebras [28, 32, 33].

AQUA has been designed to address a number of detailed modeling issues
that we believe needed further work, but the overarching goal for this work has
been the design of an algebra that would serve as the input to a broad class of
query optimizers. In this way, it could be used as a de facto standard in the
construction of object-oriented query optimizers. It would serve as the target
language for user-level query languages. Any user language for which there was
a translator to AQUA could then be processed by any of the optimizers that
are designed for AQUA. Thus, AQUA is an intermediate language between the
user’s query and the query optimizer.

*This research is sponsored by the Advanced Research Projects Agency under ARPA order
No. 18 and administered by U.S. Army Research Laboratory under contract DAAB-07-91-
C-Q518. Bennet Vance is supported in part by NSF Grant IRI 91 18360.

t Current address: GTE Laboratories Incorporated, Waltham, MA, 02254
{ Current address: Computer Science Dept., Siena College, Loudonville, NY 12211

AQUA and the data model on which it is based are strongly typed and
are designed to deal correctly and uniformly with abstract types. It should be
kept in mind that although we often talk about tuples in this context, they are
abstractions as well and are not the stored representation of the objects.

AQUA is closed in the sense that all of its operators return objects that
are defined in the model. Tt should also be pointed out that although AQUA
supports updates through the use of methods, we do not discuss this here.

Any query language or algebra must be embedded in some data model. We
have attempted to provide a simple model that would be general enough to
cover the modeling concepts in other object-oriented models. We have adopted
a model in which everything is an object in the sense that it has a well-defined
interface and can be referenced from other objects, yet, we also support value-
based semantics as described later in this paper.

AQUA has been designed to be very general. We have purposely included a
rich set of operators that could directly simulate the operators in other propos-
als. AQUA is not a minimal set of operators. Redundancy allows us to more
easily accommodate many query languages, and, at the same time, allows us to
have a powerful and varied set of optimization strategies. Operator redundancy
supports optimization by making query rewrites possible.

Another goal of our work has been to support many different bulk types
in a uniform manner. We have designed AQUA in such a way that it will
not preclude additional bulk types like lists or arrays. The AQUA design
also addresses the problems introduced by type-specific equalities by providing
special functions that deal with equivalence classes and duplicate elimination
in a bulk type object based on some equality specific to the element type.
The presentation in this paper covers two bulk types, sets and multisets. The
discussion of more complex, ordered types is beyond the scope of this paper
[31].

Some of the operators that one would expect to find in any algebra appear in
AQUA as well. They have, however, been generalized to deal with many data
models and many possible bulk types. For example, our join operator (see
Table 4) takes the standard three arguments - the two input sets or multisets
and a matching predicate. It also takes an extra argument which is a function
of two inputs that combines every pair of objects from the two input sets
that satisfy the matching predicate. This can cover joins that produce sets of
pairs or joins that behave like semi-joins, for example. If the two input sets
were sets of lists, it could combine the two elements by concatenation, thereby
producing a set of lists.

AQUA 1s currently being used as the input language for two prototype
extensible optimizers, Epoq at Brown University [23] and Revelation at OGI
[11]. Tt appears to give us the power that we need for expressing complex
queries while, at the same time, 1t seems to cover the functionality of all the
query algebras of which we are aware.

2 Related Work

One of the primary goals of AQUA is to provide a model general enough to sim-
ulate the constructs of any object-oriented data model (and most value-oriented
models), no matter what choices it makes with respect to certain features (bulk

types, encapsulation, identity versus value, notions of equality, inheritance, and
operations (up to a point)). Other models have claimed similar goals, but not
necessarily in all these areas at once, and our mechanisms for achieving these
goals differ substantially from those of our predecessors. Many of the specific
constructs of AQUA were inspired by or drawn from the EXTRA/EXCESS
system [33], ENCORE/EQUAL [28], and Revelation [32].

AQUA is intended to support large numbers of bulk types and to do so
in a flexible, uniform way, such that the addition of other bulk types later
on will be straightforward. [6] proposes a meta-level algebra for collections
of complex objects with 1dentity and also includes some transformation rules
for optimization. This algebra, however, does not correspond to a specific
data model but rather to a higher-level notion of collections of objects. Its
operations and rules are templates that are intended to be “instantiated” in
actual systems according to certain parameters of the specific data model being
implemented. Thus it takes a different approach to generality than does AQUA.
It also does not support several of the constructs of AQUA (including grouping
and immutable semantics). EXTRA/EXCESS [33] also attempts to support
a large number of bulk types, but does not explicitly provide sets (they are
provided only by eliminating duplicates from multisets). The inclusion of a
union type is not new (see [19]), but we provide it with a clean algebraic
interface using both tagcase and typecase constructs to be fully general. The
importance of being flexible about the addition of new bulk types has been
established (see [21]); the modularity of the AQUA approach facilitates this
to an extent by following a rationale similar to that of Rozen and Shasha (see
[27]) in several respects.

In attempting to support both values and objects, some systems (e.g. EX-
CESS [33]) choose to support only values in the type system and to model
objects by using explicit identifiers. Other systems (e.g. Smalltalk and ORION
[13, 5]) choose to support only objects in the type system and to model values
as a special case of objects. IQL (see [1]) defines two separate languages, one
enforcing object identity and one not supporting it at all. Our characterization
of the distinction between “objects” and “values” as the difference between en-
tities (objects) with mutable and immutable semantics provides a much cleaner
formalism, and was partially inspired by systems such as Larch [14]. By cleanly
separating the notions of type (a syntactic concept) and semantics we provide
a model that treats both values and objects as first-class citizens and has a
simpler type system. We are not aware of another model that takes this ap-
proach, nor of one that takes the clearly-separated, 3-level view of an object
that we do (type, semantics, and implementation; see Section 3.1). Buneman
and Ohori (see [8]) exhibit a similar philosophy, though, in their distinction
between a kind and a type.

C++ [30] has a notion of “const” that is similar to our notion of “im-
mutable”, but in C4++ this notion is part of the type system, and thus causes
a variety of problems that motivated us to separate type and semantics. Eiffel
[22] makes a distinction between reference and copy semantics, but not be-
tween mutable and immutable semantics. Unlike ILOG (see [15]) and others,
we avoid explicit identifiers in the model, viewing them as an implementation
concern, and reflecting the distinctions between objects and values by using
varying semantics (see Section 3.3).

It has been pointed out by Atkinson et al. (see [4]) that in object-oriented

systems,; a type may supply its own method for testing equality. This capability,
however, introduces problems such as what is the meaning of operators like set
union that depend on equality for their own semantics. The AQUA approach to
enforcing a notion of equality among the elements of a set seems to be without
precedent because in many cases there is no need for any notion of equality
other than object identity but it still allows the (non-deterministic) creation of
sets whose members are determined by an arbitrary equivalence relation. Many
models (e.g. MDM [25]) do not have this flexibility.

Most “pure” object-oriented models ([13, 20], and others) provide and en-
force encapsulation of data types. In AQUA our notion of type is more general:
not everything is forced to be of an encapsulated, abstract data type whose only
interface is that provided by the definer of the type. But AQUA does support
such types, and does so using the “abstraction” type constructor, allowing any
database object to be described using a single uniform type system. This is
similar to the ADT concept provided by Postgres [26], but more general in the
sense that any type definable in the AQUA type system can be abstracted into
a true encapsulated type, and an abstraction in AQUA is a first-class citizen
of the type system — the abstraction constructor has the same status as any
other constructor. The distinction is that an object of an abstraction type has
only the user-defined methods as an interface, while an object of (for example)
a set type has an interface consisting of union, difference, etc. This is similar
to Postgres’s notion of user-defined Postquel functions and the functions and
procedures of EXCESS [9], but in those systems, the ability to define functions
allows one to add operations to an existing, non-encapsulated type (i.e., en-
capsulation is not enforced in those systems but is in AQUA). AQUA can, of
course, emulate these features of Postgres and EXCESS. The use of a type con-
structor to represent abstraction enables all objects in an AQUA database to
exist in one seamless type system. Our approach is similar to that of [3], but in
their model not everything is an object, so their equivalent to our abstraction
constructor must enforce many more of the facets of “objectness” than must
ours.

Several of our operators resemble operators of ENCORE/EQUAL, EX-
TRA/EXCESS, and Revelation. See Section 5 for detailed descriptions of the
operators. Fold comes directly from Revelation, but we have adapted it for use
with both sets and multisets, as it is basically a form of structural recursion
([7]). Apply is similar to mapping-style operators of other models; it is closely
related to the SET_APPLY operation of EXCESS. Our nest and unnest op-
erations are generalizations of those defined in ENCORE/EQUAL, and the
group and set operations are also found in EXCESS. Dup_elim for both sets
and multisets (as we’ve defined it) and convert appear to be original to this
model, with dup_elim being by far the more interesting. AQUA’s dup_elim
can be thought of as a generalization of other duplicate elimination operators
(e.g. that of ENCORE/EQUAL [28]). Our binary join operation is similar to
the n-ary image operator of MDM [25], but differs from it in that we separate
the join predicate from the function to be applied to matching pairs; the idea
of this is to enhance optimization by making certain queries (e.g. equijoins)
easier to recognize. A set-theoretic choose operator appears in the algebras of
Osborne and MDM (see [24, 25]). Non-determinism is also present in [2], which
describes a witness operator which operates in a logical (rather than an alge-
braic) setting and creates a set of possible interpretations of a formula, resulting

in non-determinism. Also, the decision to make the boolean operators (and,
or, and not) full-fledged algebra operators, rather than constructs available
only in certain parts of the language (e.g. predicates), as in the relational alge-
bra, EXCESS, and Straube’s algebra (see [33, 29]), adds to the flexibility of the
algebra. Finally, the type parameter to union, difference, and intersection is
similar to that used in EXCESS.

3 The AQUA Data Model

The AQUA data model is founded on the notions of strong typing and abstract
data types. In the AQUA data model, an object has a type, and its state is
accessed and modified via a well defined set of interface functions. The state
of an object 1s a mapping from AQUA objects to mathematical values. All
AQUA objects are unique, and this uniqueness can be detected by the user.
AQUA objects have identity, and can be distinguished using equality that is
based on identity. We do not specify the implementation of identity, to prevent
a fixation on object identifiers. The most important point is that objects are
unique, and that given two objects, we can determine whether or not they are
the same object.

Everything that is stored in an AQUA database is an object. Database
objects can have global names which facilitate access to the corresponding
object. This approach allows the model to have a uniform flavor. The expressive
power of the model is not crippled by this uniformity, as we shall see below.

The uniformity of the data model allows us to easily and consistently define
algebraic operators over collections of objects and values.

3.1 A Three Tiered Object Model

A common view of types is that they are a description of various aspects of the
meaning or behavior of that type. In the AQUA type system, we have separated
the notion of “syntactic” type from the notion of “semantic” type. Types are
a syntactic property of names. Each type has an associated non-empty set of
semantics, each of which provides a description of meaning and behavior that
objects of the type can have. Every type provides a set of interface functions,
since everything in AQUA is an object. The interface presented by the type is a
set of signatures for the interface functions. The meaning and implementation
of the interface functions is determined by the semantics and implemention of
a given instance of the type.

An AQUA type is defined recursively:

B = {integer, float, boolean, string}
(the set of base types)

(name, hier, C(my :t1,...,my : 1))
m; 1s a name, £, ..., t, are types or objects, and C is a type constructor.

The hiersymbol represents the set of immediate supertypes of the type being
defined. The data model supports subtyping via the notion of substitutability.
Since our types are syntactic, substitutability is also syntactic. We use the
symbols C and I to indicate subtype and supertype relationships between

types. Functions have types, although our notation (described below) only
allows the instantiation of particular functions. The name equivalence rule is
used for determining the equality of two AQUA types.

The semantics of a type might loosely be thought of as a Larch [14] speci-
fication, which axiomatically describes properties of the operations on a type.
The particular language used for describing semantics is a topic of our current
research.

Specifying semantics separately from types allows different instances of the
same type to have different behaviors. For example, making this distinction
aids us in our goal of viewing all entities as abstract data types by moving the
traditional distinction between objects and values into the semantics layer. This
is discussed in more detail below. At present, we define two possible semantics,
mutable and immutable. Objects with mutable semantics may update their
state, while objects with immutable semantics may not.

Another example of the use of semantics is the declaration that certain
operations are commutative. A query optimizer could then make use of such
information when optimizing a query. The semantics describing commuta-
tivity for deques might be written as not Empty(q) => enque(deque(q),z) =
deque(enque(q, x)). Commutativity axioms for sets might include:
select(p2)(select(pl)(s)) = select(pl)(select(p2)(s)) or join(p, f)(A, B) =
Join(p, f)(B, A), provided p and f are commutative. See Section 5.1 for a com-
plete description of the AQUA join operator).

Each semantics of a type may have multiple implementations, resulting
in the third tier of our three tiered type system. An implementation is a
description of how an instance of a type with a particular semantics is to be
implemented (in terms of data structures and algorithms). The specification
of implementation allows the database or a user to select the most desirable
implementation at any point in the lifetime of the object. Thus, an object
really is an instance of a particular implementation of a particular semantics
of a type. A result of our approach is that type can be determined statically
(at compile-time), but semantics and implementation can only be determined
at run time.

3.2 Constructing Types

A type constructor is a meta type which defines a family of types. The
Set type constructor defines the family of types that includes Set[Person],
Set[Department], etc. New types are created by instantiating the meta type
with a specific type, like Person or Department.

The interface of a new type is determined by the particular type constructor
and its parameters. AQUA types with user-defined interfaces may also be
defined using a special “abstraction” type constructor, defined below. All types
defined using the abstraction constructor must provide their own new operation
for creating objects of that type. The operators of the AQUA algebra are the
methods on the AQUA type constructors.

We define the following standard type constructors; Set/T]— a collection of
unique entities of the same type; Mulliset[T] — a bag of entities of the same
type (i.e. an entity may appear more than once in a multiset); Tuple[ly :
Ty, ...y o Ty] — a fixed-length list of labeled entities of (possibly) different
types; Union[ly : Ty,...,l, : T,] — a tagged union, similar to that found in

many programming languages; Function[T}, ..., T,,T,] — a named list of types,
the last of which is the output type of the function (the others being the input
types); Abs[fi : T%,,..., fa @ Ty,] — abstraction. An abstraction is a new
abstract data type and has a collection of named functions, which form the
interface of the abstraction. (We leave the representation of the abstraction to
the implementation and do not discuss it here); N-dimensional array[T](n,l) -
an n-dimensional collection of entities of the same type; individual entities can
be accessed directly. The parameter I is a list of n dimensions; at most one of
the dimensions may be of variable length; List/T] — a sequence of entities of
the same type; Tree[T]— a tree whose nodes all contain entities of the same
specified type; and Graph[T]— a graph whose nodes all contain entities of the
same specified type. Lists, trees, and graphs are not discussed further here; see
[31] for a complete description of them. N-dimensional arrays are a subject of
our future research.

Abstractions, tuples and unions are subtypeable. Functions are subtypeable
using the standard contravariance rule. Sets and multisets are not subtypeable.
As a reminder, the principle of substitutability states that a subtype may be
used anywhere its supertype may be used. If we allowed sets to be subtypeable,
then given a variable zoo with type Set[Animal],and Dog C Animal, then we
could assign zoo an object of type Set[Dog], and then we could also incorrectly
insert the elephant Dumbo, an animal, into zoo, a Set[Dog]. A similar argument
shows that multisets are not subtypeable.

3.3 Our Approach to Values

Mutable and immutable semantics are the key to incorporating the traditional
notions of object and value into the AQUA model. In the discussion that
follows, we use object to refer the the traditional notion of object, and use
AQUA object to refer to objects as they appear in AQUA. There are (so far)
two possible semantics for AQUA objects, mutable and immutable. Other
semantics can be defined, and AQUA objects may have any semantics that has
been defined in the system and is applicable to that type.

AQUA supports the traditional notion of values via immutable semantics
for objects. If an AQUA object is immutable, its contents can never change,
and 1t becomes impossible to detect whether or not it is being shared — it
takes on the role of a value. The AQUA base types only support immutable
semantics. Traditionally, objects are used to achieve sharing, and values are
used to prevent sharing.

The type system will allow an immutable AQUA object to be assigned to
a variable referencing a mutable AQUA object. Variables only have a type,
not a semantics. For example, semantics allow us to create a single type, say
Person, which has mutable and immutable semantics. We can then create a
mutable Person and an immutable Person, and use either one where a Person
is required. The behavior of the program depends on whether or not the Person
is mutable or immutable at the time that the code is executed. As discussed in
the next section, this allows us to have type compatible Person “objects” and
Person “values”.

3.4 Examples

We will use the following schema definitions to show the use of the abstrac-
tion type constructor, and to set the stage for some sample queries described
later. The examples use the abstraction constructor to specify the interface of
of the abstract data type, and show a name implementation specification to
describe the representation of the abstract type. A Company is an abstract
data type which uses a tuple as its representation, and which supplies a set of
methods to access and update its name and address. Person is similar, but
it also has an Employer field which 1s of type Company. We also have a set
of Company objects, Companies = Set[Company] and a set of Person ob-
jects, Persons = Set[Person]. No semantics is presented since our language
for defining semantics is incomplete.

type Company =
abs(name(Company)— > String;
change_name(Company, String);
address(Company)— > String;
change_address(Company, String);

Implementation CompanyA for Company =
Tuple[name : string, address : string)

type Person =
abs(name(Person)— > String;
address(Person)— > String;
employer(Person)— > Company;

Implementation PersonA for Person =
Tuple[name : string, address : string,
employer : Company|

4 The AQUA Approach to Algebra Design

In this section, we discuss some of the design issues related to the AQUA
algebra, including the syntax of terms, the use of type parameters, and the
treatment of equality.

4.1 Syntax

Expressions in the algebra are represented by terms. A term is either: a vari-
able, constant or function symbol, a lambda abstraction of the form A(zy :
Ty,xe : Tay oy 2 To)t 0 R, or an application, to(ty : Th, -tk Tp)(th41 -
Tht1,tn 2 Tp) o R, where £g,t1,...,t, are terms and #y must have a func-
tion type. A lambda abstraction can be given a name. For example, the term
Names = apply(A(p)invoke(name)(p))(Persons) is a named term returning

a set containing the names of each person in a set of Persons. Apply (de-
fined in table 1), invoke and name are function symbols, p is a variable, and
A(p)invoke(name)(p) is a lambda abstraction.

We note that predicates must be functions with boolean return type. Pred-
icates are composed using AQUA’s built-in operators and its term language,
which is based on lambda calculus. They are normally passed as parameters
to operators like select, join, exists, and forall. All queries result in the cre-
ation of a new AQUA object as the result. For example, the query discussed in
the previous paragraph would result in a new set containing the names of each
person in a set of Persons.

Some of the AQUA operations are parameterized by an equality, a type, a
function, a name, or some combination of these. In the next subsections we de-
scribe type parameters and equalities, before actually describing the operations
in Section b.

We adopt some conventions and notations for defining the operators. A and
B are used to refer to the input sets or multisets; R is used to denote the output
set/multiset or the result set/multiset; a is used to represent an element of the
input set or multiset A; f, g and h are used to represent functions; ¢d represents
the default equality (identity); and p represents a predicate. T indicates the
result type of an operator. Tuples are represented by <>, L is a tuple field
name, and a/L means the tuple value a minus the field labeled L. Other
notations will be defined as needed.

4.2 Type Parameters

The parameterized type constructors, and subtyping requirements for types,
are designed to support static type-checking. Onme choice that was made to
assist in this support is to explicitly give a result type as a parameter to some
of the algebraic operations.

Many of the operations in our algebra construct instances of new types as
their result. In such cases, inferring the result type is not easy in an alge-
bra that allows multiple supertypes and union types. In order to resolve this
difficulty and provide flexibility, the algebra takes the result type as an input
parameter for operators in which we may not always have a unique supertype
when combining inputs of compatible (but not identical) types. For example,
consider the union of a set of oranges and a set of lemons. The type of the
result can be either a set of “fruits” or a set of “good sources of Vitamin C”
(Figure 1). To resolve this, the user has to specify the type of the result.

Figure 1: Result type for union with multiple supertypes

4.3 Equality

Some types may have more than one useful notion of equality. The default
equality for every type is identity. The built-in primitive types (integer, float,
boolean and string) have the standard definitions for equality. Meaningful user-
defined equalities should induce an equivalence relation over all the instances
of that type.

Equality is essential to the definition of some operators, including union,
intersection, difference, membership, LFP (least fixed point), and nest for
sets, and union, additive_union, intersection and difference for multisets.
These operators take a user defined equality as parameter. This equality is
used to eliminate duplicates in the result.

The set union and LFP operations display the following useful property. If
the result of, say, a union operator is used as input to another operator, then it
is not necessary to eliminate duplicates when the union is computed. Instead,
the subsequent operator(s) assume responsibility for eliminating duplicates. In
this case identity should be supplied as the equality parameter for the union.
In the case where union or LFP is the outermost operator, or the case where
an existing set is viewed through a different (other than the one that created it)
equality, the dup_elim operator is used to eliminate duplicates according to a
user specified equality. This operator takes an equality (in the form of a binary
predicate) as a parameter, and eliminates duplicates under that equality. Any
object that is a duplicate under identity is a duplicate under the user equality,
but not vice versa.

Dup _elim can be defined in terms of two other operators, group and
choose. If eq is a binary predicate, and S is a set,

dup_elim(eq)(A) = apply(choose o snd)
(group(A(a)Immutable(
select(A(b)eq(a, b))(A))(A)))

The Group(f)(S) operator groups the elements of set S into equivalence
classes by using the f parameter, returning a set of tuples whose first field is the
result of applying f to a member of an equivalence class and whose second field
is the set of instances in the equivalence class. In the definition of dup_elim,
this produces a set of tuples with two field, each of which is a set of elements
which is equivalent to an element a of A. This set of tuples is supposed to
represent the set of equivalence classes induced by the equality eq to dup _elim.
There is a small problem. The result of a select 1s always a new set object.
This means that there will be tuples which have first elements which are not
identical, but would be the same values. The second elements of such tuples
would be immutable objects (values) according to the definition of group. Such
tuples should be considered duplicates and one should be removed, but the
non-identical first fields prevent the elimination of the tuples. Immutable(x)
is a semantics cast, which forces the expression x to have immutable (value)
semantics. Applying Immutable to the result of the select forces the set
values to be created. Now group will be able to eliminate duplicate tuples
representing a single equivalence class. To obtain the final result, we pick one
element from each equivalence class to serve as a representative for that class.
This is accomplished by extracting the second field of each tuple (using the snd

| Definitions

apply(f)(4) = {f(a)lac A}
select(p)(A) = {ala€ A, p(a)}
exists(p)(4) = da€ Ap(a)
forall(p)(A) = Va € Ap(a)
mem(a,eq)(A) = FJw € Aeqla,)
u, A=0
fold(w. £ =) D fa), A#0

Table 1: Unary Set Iterators

function), and the using the Choose operator to nondeterministically select on
element of the resulting set. The dup _elimed set has no duplicates with respect
to the new equality, thus it also has no duplicates according to identity. See
Tables 1 and 4 for definitions of apply, choose, group, and select.

For many queries, this approach allows any equality to be used at any
point during query processing without compromising our notion of “set”. The
operators remain defined in the abstract and we are assured that they can
handle any kind of equality that may arise, including anything the writer of a
query might wish to pass in as a parameter.

Consider the union of two sets A = {(1,a),(2,0)} and B = {(2,a),(2,b)}.
Assume we want A union B using a notion of equality that says two elements
are equal if their fields are pairwise equal, so that the (2,5) in A and the (2,5)
in B are equal. The result will then have three elements: {(1,a),(2,5),(2,a)}.

Now suppose we want A union B using a notion of equality that says two
elements are equal if their second fields are equal. The (1,a) in A and the (2,a
in B are also equal. The required result is then {(1,a),(2,6)} or {(2,a),(2,b)}.
Either result is correct since the equality only examines the second element
of each tuple. (5,a) could legally be in the result, but is disallowed by our
definition of dup_elim — it was not in the set before dup_elim was applied.

5 The Operators

In this section we describe the operations defined on the different types. Some
of these operators can be expressed in terms of some others, leading to many
redundancies in the operator set. They have been retained partly because they
permit some expressions to be written with greater conciseness and clarity
than would otherwise be possible, and partly because they lend themselves to
specialized implementations and optimizations that can be more efficient than
those of a more general operator.

5.1 Set Operators

This subsection describes the set operators in our algebra. Most of these oper-
ators are derived from similar operators in the literature [9, 28, 32] and excep-
tions are noted as they arise. It is our combination and utilization of them, in

Definitions

union(eq, TY(A,B) = dup_elim(eq)({z]| (x € Aorz € B)})
. ~ dup_elim(eq)({z]| (x € Aorx € B) and
intersect(eq, I')(4, B) = (mem(z, eq)(A) and mem(x eq)(B))})

. dup_elim(eq)({z| z €
dlﬂ(@q,T)(A, B) and ﬁ(mem(,eq ())})
Table 2: Binary Set Operators
| Definition |
LFP(cq, f) = dup_elim(eq)(| J(f'({})))
i=0
Table 3: Least Fixed Point Operator
Definitions
set(a) = {a}
choose(A) = somea€ A
{(f(a), eqclass(a))|a € A},
group(f)(4) = where egclass(a) =
{a’la’ EA,(f()) ((’)})
. . RC Ast.Ve,y€ R, eq(z,y) = wd(z,y
dup_elim(eq)(4) = = and Ve € A,y € Rs.t.eq(z,y)

~ {tup_concat(a/L,< L:{b.L|b € Aand

mestet, W) = egy(a/1,b/1)} >)a € A}
tup_concat(a/L, < L :s>)la € Aand

unnest(L)(4) = 1 spE a.L} (a/)
convert(4d) = {xzlr e Ax}

Table 4: Set Restructuring Operators

Definitions

Join(p, f)(4, B)

TFa,0)a € AbE B, p(a,b)]

tup_join(p) (4, B)

Jjoin(p, tup_concat)(A, B)

outer_join(p, f, g, h, T)(A4, B)

{fla,b)lac A,be B p()}
U{g(a)la € A,¥b e B. —|p(a, b
U{h(b)|b e B,Va € A-pla,b

Table 5: Join Operators

addition to the original operators, that makes this approach more flexible than
previous ones.

A list of all the operators for sets and a brief definition for each of them,
is given in tables 1 through 5. Table 1 lists the unary set operators, table 2
deals with the binary set operators, table 3 defines the least fixed point (LFP)
operator, table 4 describes the set restructuring operators, and table 5 lists the
various join operators. In the rest of the subsection, we expand upon issues
about some of the operators of the algebra.

The fold operator is a powerful operator — fold (u, f, ®)(A) reduces set A
to a single value by applying f to each element and iteratively combining the
results with a dyadic operator @. u is the result of fold on the empty set. For
example, set_collapse can be implemented using fold, the identity function,
and the union operator (using the default equality).

fold ({}, A(#)x, union(id))({{1,2},{2,3,4},{5}}) = {1,2,3,4,5}

Operators exists, forall and mem return a boolean value and can be used
as predicate formers. Nest and unnest have been defined in table 4 using a
single tuple field name L. However, this definition can be easily extended to a
list of field names. In such a case, a/L refers to the tuple value @ minus the
fields in the list L and a.L is the concatenation of all the values of the fields
in list L. To compare the equality of a pair of tuples minus the field L, we use
the equality eq;, which does a pairwise comparison of the contents of each field
using the equality egq.

The binary set operators, union, intersection and difference are the fa-
miliar set-theoretic operations; however our definitions are complicated by con-
siderations of typing. When two sets are combined using a binary set operator,
it is not necessary that they have the same type. As in EXCESS [9], these
operators take an extra argument that specifies the type of the result, as dis-
cussed in subsection 4.2. The result type of union has to be a supertype of the
types of the input sets. However, in intersection the result type can either be
a supertype of both input types or be one of the input types. In the case of
difference, the result type has to either be the type of the first input set or one
of 1ts supertypes.

To briefly illustrate some of the set operators, consider a query that finds
all of the people who live in the same city in which they work and groups them
based on the name of this city. This is done by using the employer field of a
Person object. We use A.B as a shorthand for invoke (A, B), which invokes
method B on object A.

LiveWhereWork People =

select(A(z)z.address = x.employer.address)(Persons)

Next, we use group to group the people in LiveW hereWork People by the
city in which they live.

group(A(x)z.address)(LiveW hereW ork People)

The result consists of a set of ordered pairs (city, people) where city is the
name of a city in which at least one person both lives and works and people is

| Definitions |

multiset(a) = {*xax*}
convert(A) = {zlre A}
dup_elim(eq)(4) = convert(dup_elim(eq)(convertA))

Table 6: Multiset Restructuring Operators

a set of Person objects all of whom live and work in city.

The various join operators deserve special mention due to their general-
ity. Join takes a function as a parameter, thus allowing the user to define
a “combining” function. The other join operators are similar generalizations
involving a predicate and a function. Note that the union used in the definition
of outer_join is the set union, using the default equality. The resultant type
T of the outer_join must be a supertype of the result types of functions f, ¢
and h, to allow unioning the results of the functions. Left and right outer joins
can be expressed in terms of outer_join with the appropriate interpretation
of null values. Familiar join operators like natural_join, equijoin, semijoin
and antijoin are not primitives in the algebra, but they can be expressed easily
in terms of the included join operators.

The LFP operator [17] is defined in table 3. The function f is of type
T — T, where T is a set type. The notation f* is equivalent to f(f'~'). The
union for LFP uses the equality parameter for LFP as its equality parameter,
and its type parameter, T, must be the input/result type of f. We also make
the restriction that f be “monotonic” in the sense that A C B = f(4) C f(B).

5.2 Multiset Operators

Multisets support nearly all the same operations as sets, with very similar
semantics in most cases. The difference between a multiset and a set is that a
multiset may contain multiple occurrences of the same element. The notation
used to denote multisets is {* e, eq, -, e, *x}, where ¢; are the elements of
the multiset. A multiset former is similar to a set former, so the multiset
former {* x|z € M and # > 1 x} is read as “the multiset of items x, such
that each occurrence of x in M is greater than one”. We define the cardinality
of an element of a multiset as the number of occurrences of that element in
the multiset. The notation |A|, means “the cardinality of a in multiset A”.
Similarly, the notation |A[.,(4) means “the cardinality of elements “equal” to a
(where equality is determined by the equality operator, eq) in multiset A”. We
will also speak of the cardinalily of a multisel |A|, meaning its total element
count, tallying duplicates as many times as they occur. Multiset[T] denotes a
multiset containing objects of type T'.

Most multiset operators are quite similar to the corresponding set operators,
except for the fact that the input and output types are multisets instead of sets.
Most of the formal definitions in tables 1, 3, 4, and 5 hold for multisets too.

The exceptions are multiset, dup_elim, convert, defined in table 6; and
union, additive union, intersection and difference which are defined in ta-
ble 7.

In the binary operators on multisets, we find the greatest departure from
the corresponding set operators. All the binary operators are based on the

Definitions |

R : Multiset[T] such that Va : T,
|Rleq(e) = max(|Alegee), [Bleg(r))
Also,z € R = (x € A)or (x € B)
R : Multiset[T] such that Va : T,
additive union(eq, T)(A, B) = |Rlege) = |Alege) + | Bleg(a)
Also,z € R = (x € A)or (x € B)
R : Multiset[T] such that Va : T,
|Rleg(zy = min(|Aleq(o), | Bleg(a))
Also,z € R = (x € A)or (x € B)
R : Multiset[T] such that Vo : T,
diff(eq, T)(A, B) = |R|€q(x) = HlaX(O, |A|€q(x) < |B|€q(x))
Also,z € R = (x € A)or (x € B)

union(eq, T)(A, B)

intersect(eq, T)(A, B)

Table 7: Binary Multiset Operators

cardinality of the elements in the two input sets (table 7). For example, union
in a multiset is,

union (id, Int)({+* 1,1,2*}, {+1,2,2%}) = {+ 1, 1,2, 2%}

However, regarding the typing of the arguments and the result, binary mul-
tiset operators are similar to the set operators. We also define additive_union
for multisets.

5.3 Other Type Operators

Besides sets and multisets, the algebra supports a host of other types. The
union type along with its constructor allows creation of discriminated unions.
The operations defined for the type are union, tagcase and typecase.
Union (U, tag, e) creates an instance of union type U and initializes its contents
to be entity e with tag tag. Both tagcase (¢) and typecase (¢e) selectively ex-
ecute a set of terms based either on the tag or the type of the union instance
e.

Function types represent functions, which take some number of typed pa-
rameters and return a single typed result. Instances of function types are
created by the use of typed lambda expressions. These instances cannot be
tested for equality, since it is impossible to compare two functions.

Tuples are records with named fields, with the familiar operators for in-
stance creation (tuple), concatenation (tup_concat), and field selection (se-
lect field or infix “.”). Sufficient care is taken to avoid duplicate field names
in tup_concat.

Boolean is actually a type rather than a constructor. Booleans are used
to represent truth values for conditionals and are provided as the result of
comparisons and quantifiers (the set operators exists and forall). Operations
on booleans are and, or, and not.

Abstract data types are composite types whose elements are accessed only
via a set of functions, which are called the interface. The functions are accessed
via the invoke(7, f) operator which invokes f on instance I.

| Type | Operators |
Set Set, Choose, Union, Fold, LFP
Multiset | Multiset, Choose, Additive_Union, Fold, LFP
Union Make_union, Tagcase, Typecase

Tuple Tuple, Select_field
Boolean | And, Not
Abs New, Invoke

Table 8: Primitive AQUA Operators

5.4 Primitive Operators

Table 8 provides a minimal set of primitive operators' for each type. All non-
primitive operators can be defined in terms of the primitive operators for the
type. For example, mem for a set can be defined in terms of fold:

mem/(eq, a)(A) = fold(false, A(zx)eq(x, a), or)(A)
Similarly, select can also be expressed in terms of fold:
select(p)(A) = fold({ }, A(a)if p(x) then set(x) else { }, union(id, T'))(A)

Dup_elim can also be expressed using fold with set and union (using
identity as the union equality). Indeed, most operations (e.g., union, intersect
and diff with equality parameters, apply, group) can be defined with those
three primitive operations.

6 Conclusions

This paper has briefly summarized the AQUA data model and algebra. It is
proposed as the input language for object-oriented query optimizers. It has
been designed to cover the functionality of many existing query languages, and
to provide the maximum potential for optimization. As a result, the set of
operators is purposefully not minimal. We have illustrated its use with a few
simple examples.

The AQUA data model embodies a uniform approach to objects and values.
Values are simply immutable objects. They are objects in all other respects.
They have an abstract interface, and they possess an identity that can be used
to refer to them.

A type describes syntactic properties of objects and their methods. Seman-
tic properties of a type are supplied by an axiomatic specification, called its
semantics, that is separated from the type definition (i.e., syntax). Immutabil-
ity is an example of something that would be specified in the semantics. A given
type can be associated with multiple semantics, and each of these semantics
can be implemented in many ways. Currently we provide a default mechanism
for determining the semantics of objects that are results of algebraic queries
and we provide a mechanism for overriding this default.

1The primitive set union in the table uses identity for equality

This paper has discussed algebraic operators for the Set and the Multiset
types. We also propose an extension to AQUA to include algebraic operators
for other bulk types such as List, Tree, and Graph [31].

Acknowledgements

Thanks to: Catriel Beeri, DARPA, Leo Fegaras, David Maier, Scott Meyers,
and Hagit Shatkay.

References

[1] S. Abiteboul and P. Kanellakis. Object identity as a query language primi-
tive. In James Clifford, Bruce Lindsay, and David Maier, editors, Proceed-
wmngs of the SIGMOD International Conference on Management of Data.
ACM Press, Portland, Oregon, June 1989.

[2] S. Abiteboul, E. Simon, and V. Vianu. Non-deterministic languages
to express deterministic transformations. In Proceedings of the Ninth
ACM SIGACT/SIGMOD Symposium on Principles of Database Systems,
Nashville, Tennesee, April 1990.

3] Antonio Albano, Giorgio Ghelli, and Renzo Orsini. Objects for a database
g
programming language. In Kanellakis and Schmidt [18], pages 236-253.

[4] M. P. Atkinson, C. Lecluse, P. Philbrow, and P. Richard. Design issues in
a map language. In Kanellakis and Schmidt [18], pages 20-32.

[5] Jay Banerjee, Hong-Tai Chou, Jorge F. Garza, Won Kim, Darrell Woelk,
Nat Ballou, and Hyoung-Joo Kim. Data model issues for object-oriented
applications. ACM Transactions on Office Information Systems, 5(1):3—
26, January 1987.

[6] Catriel Beeri and Yoram Kornatzky. Algebraic optimization of object-
oriented query languages. In S. Abiteboul and P. C. Kanellakis, editors,
Proceedings of the Third International Conference on Database Theory,
pages 72-88, Paris, France, December 1990.

[7] Val Breazu-Tannen, Peter Buneman, and Shamim Naqvi. Structural re-
cursion as a query language. In Kanellakis and Schmidt [18], pages 9-19.

[8] Peter Buneman and Atsushi Ohori. A type system that reconciles classes
and extents. In Kanellakis and Schmidt [18], pages 191-202.

[9] M. Carey, D. DeWitt, and S. Vandenberg. A data model and query lan-
guage for EXODUS. In Haran Boral and Per ake Larson, editors, Proceed-
wngs of the SIGMOD International Conference on Management of Data,
pages 413-423, Chicago, Illinois, June 1988.

[10] A. Chandra. Theory of database queries. In Proc. Conf. on Principles of
Database Systems, pages 1-9, 1988.

[11]

[12]

Scott Daniels, Goetz Graefe, Thomas Keller, David Maier, Duri Schmidt,
and Bennet Vance. Query Optimization in Revelation, an Overview. I[EEFE
Data Engineering Bulletin, 14(2):58-62, June 1991.

Umeshwar Dayal, Frank Manola, Alejandro Buchmann, Upen Chak-
ravarthy, David Goldhirsch, Sandra Heiler, Jack Orenstein, and Arnon
Rosenthal. Simplifying complex objects: The PROBE approach to mod-
elling and querying them. In Stanley B. Zdonik and David Maier, editors,
Readings in Object-Oriented Database Systems, pages 390-399. Morgan
Kaufmann Publishers, Inc., Los Altos, California, 1990.

Adele Goldberg and David Robson. Smalltalk-80: The Language and its
Implementation. Addison-Wesley, Reading, MA, 1983.

John V. Guttag, James J. Horning, and Jeanette M. Wing. The Larch
family of specification languages. IEEE Software, 2(5):24-36, September
1985.

Hull and Yoshikawa. ILOG: Declarative creation and manipulation of ob-
ject identifiers. In Dennis McLeod, Ron Sacks-Davis, and Hans Schek,
editors, Proceedings of the 16th International Conference on Very Large
Data Bases. Morgan Kaufmann Publishers, Inc., Brisbane, Australia, Au-

gust 1990.

IEEE. Proceedings of the Sizth International Conference on Data Engi-
neering, Los Angeles; California, February 1990. IEEE Computer Society
Press.

Paris Kanellakis. Elements of relational database theory. In J. van
Leeuwen, editor, Handbook of Theoretical Computer Science, volume 2,
chapter 17, pages 1073-1144. Elsevier Science Publishers B.V., Amster-
dam, 1990.

Paris Kanellakis and Joachim W. Schmidt, editors. Bulk Types & Persis-
tent Data: The Third International Workshop on Database Programming
Languages, Nafplion, Greece, August 1991. Morgan Kaufmann Publishers,
Inc.

G. M. Kuper. The Logical Data Model: A New Approach to Database Logic.
Ph.D. thesis, Dept. of Computer Science, Stanford University,, Stanford,
CA, Sept 1985.

David Maier, Jacob Stein, Allen Otis, and Alan Purdy. Development of
an object-oriented DBMS. In Norman Meyrowitz, editor, Proceedings of
the Conference on Object-oriented Programming Systems, Languages and
Applications, pages 472-482, Portland, Oregon, September-October 1986.

Florian Matthes and Joachim W. Schmidt. Bulk types: Built-in or add-on?
In Kanellakis and Schmidt [18], pages 33-53.

Bertrand Meyer. Object-Oriented Software Construction. Prentice-Hall,
Englewood Cliffs, New Jersey, 1988.

[23]

[29]

[30]

[31]

Gail Mitchell, Stanley B. Zdonik, and Umeshwar Dayal. An Architecture
for Query Processing in Persistent Object Stores. In Proceedings of the
Hawawe International Conference on System Sciences, volume II, pages

787-798, January 1992.

S. Osborn. Identity, equality, and query optimization. In K. Dittrich,
editor, Advances in Object-Oriented Database Systems. Berlin, Germany,
1988.

Joel Richardson and Peter Schwarz. MDM: An object-oriented data model.
In Kanellakis and Schmidt [18], pages 86-95.

L. Rowe and M. Stonebraker. The POSTGRES data model. In Proceedings
of the Thirteenth Very Large Databases Conference. Morgan Kaufmann
Publishers, Inc., 1987.

Steve Rozen and Dennis Shasha. Rationale and design of Bulk. In Kanel-
lakis and Schmidt [18], pages 71-85.

Gail M. Shaw and Stanley B. Zdonik. A query algebra for object-oriented
databases. In Proceedings of the Sizth International Conference on Data
Engineering [16], pages 152-162.

David D. Straube and M. Tamer Ozsu. Queries and query processing in
object-oriented database systems. ACM Transactions on Office Informa-
tion Systems, 8(4), Oct 1990.

B. Stroustrup. The C++ Programming Language. Addison-Wesley Pub-
lishing Company, Reading, Massachusetts, second edition, 1992.

Bharathi Subramanian, Stanley B. Zdonik, Theodore W. Leung, and
Scott L. Vandenberg. Ordered types in the AQUA data model. In Pro-
ceedings of the Fourth International Workshop on Database Programming
Languages, New York, New York, August 1993. Springer Verlag.

B. Vance. Towards an object-oriented query algebra. Tech. Report
CS/E91-008, Dept. of Computer Science and Eng., Oregon Graduate In-
stitute, Beaverton, OR, January 1992.

S. Vandenberg and D. DeWitt. Algebraic support for complex objects
with arrays, identity, and inheritance. In James Clifford and Roger King,
editors, Proceedings of the SIGMOD International Conference on Manage-
ment of Data, pages 158-167, Denver, Colorado, May 1991.

