
Pr
oc

. o
f t

he
 4

th
 In

tl.
 W

or
ks

ho
p 

on
 D

at
ab

as
e 

Pr
og

ra
m

m
in

g 
La

ng
ua

ge
s 

(D
BPL

), 
19

93

The AQUA Data Model and Algebra�

Theodore W� Leung

Brown University

Providence� USA

Gail Mitchelly

Brown University

Providence� USA

Bharathi Subramanian

Brown University

Providence� USA

Bennet Vance

Oregon Graduate Institute

of Science � Technology

Oregon� USA

Scott L� Vandenbergz

University of Mass� at Amherst

Amherst� USA

Stanley B� Zdonik

Brown University

Providence� USA

Abstract

This paper describes a new object�oriented model and query algebra that
will be used as an input language for the query optimizers that are being
built as a part of the EREQ project� The model adopts a uniform view
of objects and values and separates syntactic� semantic� and implementa�
tion concerns� The algebra addresses issues of type�de�ned equality and
duplicate elimination as well as extensions to bulk types other than sets�

� Introduction

Recently� a great deal of work has been done on the topic of object�oriented
query algebras ���� ��� 	�
 and the modeling of bulk types ��� ��� �	
� These
proposals� as well as those of other researchers on the topic� have explored some
of the fundamental issues and provided the starting point for the work reported
here� AQUA �A QUery Algebra
 is the result of a joint e�ort among researchers
who have participated in the design of previous algebras ���� ��� ��
�
AQUA has been designed to address a number of detailed modeling issues

that we believe needed further work� but the overarching goal for this work has
been the design of an algebra that would serve as the input to a broad class of
query optimizers� In this way� it could be used as a de facto standard in the
construction of object�oriented query optimizers� It would serve as the target
language for user�level query languages� Any user language for which there was
a translator to AQUA could then be processed by any of the optimizers that
are designed for AQUA� Thus� AQUA is an intermediate language between the
user�s query and the query optimizer�

�This research is sponsored by the AdvancedResearch ProjectsAgency underARPA order
No� �� and administered by U�S� Army Research Laboratory under contract DAAB�������
C�Q���� Bennet Vance is supported in part by NSF Grant IRI �� ��	
��
y Current address� GTE Laboratories Incorporated� Waltham� MA� �

��
z Current address� Computer Science Dept�� Siena College� Loudonville� NY �

��



Pr
oc

. o
f t

he
 4

th
 In

tl.
 W

or
ks

ho
p 

on
 D

at
ab

as
e 

Pr
og

ra
m

m
in

g 
La

ng
ua

ge
s 

(D
BPL

), 
19

93

AQUA and the data model on which it is based are strongly typed and
are designed to deal correctly and uniformly with abstract types� It should be
kept in mind that although we often talk about tuples in this context� they are
abstractions as well and are not the stored representation of the objects�
AQUA is closed in the sense that all of its operators return objects that

are de�ned in the model� It should also be pointed out that although AQUA
supports updates through the use of methods� we do not discuss this here�
Any query language or algebra must be embedded in some data model� We

have attempted to provide a simple model that would be general enough to
cover the modeling concepts in other object�oriented models� We have adopted
a model in which everything is an object in the sense that it has a well�de�ned
interface and can be referenced from other objects� yet� we also support value�
based semantics as described later in this paper�
AQUA has been designed to be very general� We have purposely included a

rich set of operators that could directly simulate the operators in other propos�
als� AQUA is not a minimal set of operators� Redundancy allows us to more
easily accommodate many query languages� and� at the same time� allows us to
have a powerful and varied set of optimization strategies� Operator redundancy
supports optimization by making query rewrites possible�
Another goal of our work has been to support many di�erent bulk types

in a uniform manner� We have designed AQUA in such a way that it will
not preclude additional bulk types like lists or arrays� The AQUA design
also addresses the problems introduced by type�speci�c equalities by providing
special functions that deal with equivalence classes and duplicate elimination
in a bulk type object based on some equality speci�c to the element type�
The presentation in this paper covers two bulk types� sets and multisets� The
discussion of more complex� ordered types is beyond the scope of this paper
��	
�
Some of the operators that one would expect to �nd in any algebra appear in

AQUA as well� They have� however� been generalized to deal with many data
models and many possible bulk types� For example� our join operator �see
Table �
 takes the standard three arguments � the two input sets or multisets
and a matching predicate� It also takes an extra argument which is a function
of two inputs that combines every pair of objects from the two input sets
that satisfy the matching predicate� This can cover joins that produce sets of
pairs or joins that behave like semi�joins� for example� If the two input sets
were sets of lists� it could combine the two elements by concatenation� thereby
producing a set of lists�
AQUA is currently being used as the input language for two prototype

extensible optimizers� Epoq at Brown University ���
 and Revelation at OGI
�		
� It appears to give us the power that we need for expressing complex
queries while� at the same time� it seems to cover the functionality of all the
query algebras of which we are aware�

� Related Work

One of the primary goals of AQUA is to provide a model general enough to sim�
ulate the constructs of any object�oriented data model �and most value�oriented
models
� no matter what choices it makes with respect to certain features �bulk



Pr
oc

. o
f t

he
 4

th
 In

tl.
 W

or
ks

ho
p 

on
 D

at
ab

as
e 

Pr
og

ra
m

m
in

g 
La

ng
ua

ge
s 

(D
BPL

), 
19

93

types� encapsulation� identity versus value� notions of equality� inheritance� and
operations �up to a point

� Other models have claimed similar goals� but not
necessarily in all these areas at once� and our mechanisms for achieving these
goals di�er substantially from those of our predecessors� Many of the speci�c
constructs of AQUA were inspired by or drawn from the EXTRA�EXCESS
system ���
� ENCORE�EQUAL ���
� and Revelation ���
�
AQUA is intended to support large numbers of bulk types and to do so

in a �exible� uniform way� such that the addition of other bulk types later
on will be straightforward� ��
 proposes a meta�level algebra for collections
of complex objects with identity and also includes some transformation rules
for optimization� This algebra� however� does not correspond to a speci�c
data model but rather to a higher�level notion of collections of objects� Its
operations and rules are templates that are intended to be �instantiated� in
actual systems according to certain parameters of the speci�c data model being
implemented� Thus it takes a di�erent approach to generality than does AQUA�
It also does not support several of the constructs of AQUA �including grouping
and immutable semantics
� EXTRA�EXCESS ���
 also attempts to support
a large number of bulk types� but does not explicitly provide sets �they are
provided only by eliminating duplicates from multisets
� The inclusion of a
union type is not new �see �	�

� but we provide it with a clean algebraic
interface using both tagcase and typecase constructs to be fully general� The
importance of being �exible about the addition of new bulk types has been
established �see ��	

� the modularity of the AQUA approach facilitates this
to an extent by following a rationale similar to that of Rozen and Shasha �see
���

 in several respects�
In attempting to support both values and objects� some systems �e�g� EX�

CESS ���

 choose to support only values in the type system and to model
objects by using explicit identi�ers� Other systems �e�g� Smalltalk and ORION
�	�� �

 choose to support only objects in the type system and to model values
as a special case of objects� IQL �see �	

 de�nes two separate languages� one
enforcing object identity and one not supporting it at all� Our characterization
of the distinction between �objects� and �values� as the di�erence between en�
tities �objects
 with mutable and immutable semantics provides a much cleaner
formalism� and was partially inspired by systems such as Larch �	�
� By cleanly
separating the notions of type �a syntactic concept
 and semantics we provide
a model that treats both values and objects as �rst�class citizens and has a
simpler type system� We are not aware of another model that takes this ap�
proach� nor of one that takes the clearly�separated� ��level view of an object
that we do �type� semantics� and implementation� see Section ��	
� Buneman
and Ohori �see ��

 exhibit a similar philosophy� though� in their distinction
between a kind and a type�
C�� ���
 has a notion of �const� that is similar to our notion of �im�

mutable�� but in C�� this notion is part of the type system� and thus causes
a variety of problems that motivated us to separate type and semantics� Ei�el
���
 makes a distinction between reference and copy semantics� but not be�
tween mutable and immutable semantics� Unlike ILOG �see �	�

 and others�
we avoid explicit identi�ers in the model� viewing them as an implementation
concern� and re�ecting the distinctions between objects and values by using
varying semantics �see Section ���
�
It has been pointed out by Atkinson et al� �see ��

 that in object�oriented



Pr
oc

. o
f t

he
 4

th
 In

tl.
 W

or
ks

ho
p 

on
 D

at
ab

as
e 

Pr
og

ra
m

m
in

g 
La

ng
ua

ge
s 

(D
BPL

), 
19

93

systems� a type may supply its own method for testing equality� This capability�
however� introduces problems such as what is the meaning of operators like set
union that depend on equality for their own semantics� The AQUA approach to
enforcing a notion of equality among the elements of a set seems to be without
precedent because in many cases there is no need for any notion of equality
other than object identity but it still allows the �non�deterministic
 creation of
sets whose members are determined by an arbitrary equivalence relation� Many
models �e�g� MDM ���

 do not have this �exibility�
Most �pure� object�oriented models ��	�� ��
� and others
 provide and en�

force encapsulation of data types� In AQUA our notion of type is more general�
not everything is forced to be of an encapsulated� abstract data type whose only
interface is that provided by the de�ner of the type� But AQUA does support
such types� and does so using the �abstraction� type constructor� allowing any
database object to be described using a single uniform type system� This is
similar to the ADT concept provided by Postgres ���
� but more general in the
sense that any type de�nable in the AQUA type system can be abstracted into
a true encapsulated type� and an abstraction in AQUA is a �rst�class citizen
of the type system � the abstraction constructor has the same status as any
other constructor� The distinction is that an object of an abstraction type has
only the user�de�ned methods as an interface� while an object of �for example

a set type has an interface consisting of union� di�erence� etc� This is similar
to Postgres�s notion of user�de�ned Postquel functions and the functions and
procedures of EXCESS ��
� but in those systems� the ability to de�ne functions
allows one to add operations to an existing� non�encapsulated type �i�e�� en�
capsulation is not enforced in those systems but is in AQUA
� AQUA can� of
course� emulate these features of Postgres and EXCESS� The use of a type con�
structor to represent abstraction enables all objects in an AQUA database to
exist in one seamless type system� Our approach is similar to that of ��
� but in
their model not everything is an object� so their equivalent to our abstraction
constructor must enforce many more of the facets of �objectness� than must
ours�
Several of our operators resemble operators of ENCORE�EQUAL� EX�

TRA�EXCESS� and Revelation� See Section � for detailed descriptions of the
operators� Fold comes directly from Revelation� but we have adapted it for use
with both sets and multisets� as it is basically a form of structural recursion
���

� Apply is similar to mapping�style operators of other models� it is closely
related to the SET APPLY operation of EXCESS� Our nest and unnest op�
erations are generalizations of those de�ned in ENCORE�EQUAL� and the
group and set operations are also found in EXCESS� Dup elim for both sets
and multisets �as we�ve de�ned it
 and convert appear to be original to this
model� with dup elim being by far the more interesting� AQUA�s dup elim
can be thought of as a generalization of other duplicate elimination operators
�e�g� that of ENCORE�EQUAL ���

� Our binary join operation is similar to
the n�ary image operator of MDM ���
� but di�ers from it in that we separate
the join predicate from the function to be applied to matching pairs� the idea
of this is to enhance optimization by making certain queries �e�g� equijoins

easier to recognize� A set�theoretic choose operator appears in the algebras of
Osborne and MDM �see ���� ��

� Non�determinism is also present in ��
� which
describes a witness operator which operates in a logical �rather than an alge�
braic
 setting and creates a set of possible interpretations of a formula� resulting



Pr
oc

. o
f t

he
 4

th
 In

tl.
 W

or
ks

ho
p 

on
 D

at
ab

as
e 

Pr
og

ra
m

m
in

g 
La

ng
ua

ge
s 

(D
BPL

), 
19

93

in non�determinism� Also� the decision to make the boolean operators �and�
or� and not
 full��edged algebra operators� rather than constructs available
only in certain parts of the language �e�g� predicates
� as in the relational alge�
bra� EXCESS� and Straube�s algebra �see ���� ��

� adds to the �exibility of the
algebra� Finally� the type parameter to union� di�erence� and intersection is
similar to that used in EXCESS�

� The AQUA Data Model

The AQUA data model is founded on the notions of strong typing and abstract
data types� In the AQUA data model� an object has a type� and its state is
accessed and modi�ed via a well de�ned set of interface functions� The state
of an object is a mapping from AQUA objects to mathematical values� All
AQUA objects are unique� and this uniqueness can be detected by the user�
AQUA objects have identity� and can be distinguished using equality that is
based on identity� We do not specify the implementation of identity� to prevent
a �xation on object identi�ers� The most important point is that objects are
unique� and that given two objects� we can determine whether or not they are
the same object�
Everything that is stored in an AQUA database is an object� Database

objects can have global names which facilitate access to the corresponding
object� This approach allows the model to have a uniform�avor� The expressive
power of the model is not crippled by this uniformity� as we shall see below�
The uniformity of the data model allows us to easily and consistently de�ne

algebraic operators over collections of objects and values�

��� A Three Tiered Object Model

A common view of types is that they are a description of various aspects of the
meaning or behavior of that type� In the AQUA type system� we have separated
the notion of �syntactic� type from the notion of �semantic� type� Types are
a syntactic property of names� Each type has an associated non�empty set of
semantics� each of which provides a description of meaning and behavior that
objects of the type can have� Every type provides a set of interface functions�
since everything in AQUA is an object� The interface presented by the type is a
set of signatures for the interface functions� The meaning and implementation
of the interface functions is determined by the semantics and implemention of
a given instance of the type�
An AQUA type is de�ned recursively�

B � finteger� float� boolean� stringg
�the set of base types


�name� hier� C�m� � t�� ����mn � tn


mi is a name� t�� ���� tn are types or objects� and C is a type constructor�

The hier symbol represents the set of immediate supertypes of the type being
de�ned� The data model supports subtyping via the notion of substitutability�
Since our types are syntactic� substitutability is also syntactic� We use the
symbols v and w to indicate subtype and supertype relationships between



Pr
oc

. o
f t

he
 4

th
 In

tl.
 W

or
ks

ho
p 

on
 D

at
ab

as
e 

Pr
og

ra
m

m
in

g 
La

ng
ua

ge
s 

(D
BPL

), 
19

93

types� Functions have types� although our notation �described below
 only
allows the instantiation of particular functions� The name equivalence rule is
used for determining the equality of two AQUA types�
The semantics of a type might loosely be thought of as a Larch �	�
 speci�

�cation� which axiomatically describes properties of the operations on a type�
The particular language used for describing semantics is a topic of our current
research�
Specifying semantics separately from types allows di�erent instances of the

same type to have di�erent behaviors� For example� making this distinction
aids us in our goal of viewing all entities as abstract data types by moving the
traditional distinction between objects and values into the semantics layer� This
is discussed in more detail below� At present� we de�ne two possible semantics�
mutable and immutable� Objects with mutable semantics may update their
state� while objects with immutable semantics may not�
Another example of the use of semantics is the declaration that certain

operations are commutative� A query optimizer could then make use of such
information when optimizing a query� The semantics describing commuta�
tivity for deques might be written as notEmpty�q
 �� enque�deque�q
� x
 �
deque�enque�q� x

� Commutativity axioms for sets might include�
select�p�
�select�p	
�s

 � select�p	
�select�p�
�s

 or join�p� f
�A�B
 �
join�p� f
�B�A
� provided p and f are commutative� See Section ��	 for a com�
plete description of the AQUA join operator
�
Each semantics of a type may have multiple implementations� resulting

in the third tier of our three tiered type system� An implementation is a
description of how an instance of a type with a particular semantics is to be
implemented �in terms of data structures and algorithms
� The speci�cation
of implementation allows the database or a user to select the most desirable
implementation at any point in the lifetime of the object� Thus� an object
really is an instance of a particular implementation of a particular semantics
of a type� A result of our approach is that type can be determined statically
�at compile�time
� but semantics and implementation can only be determined
at run time�

��� Constructing Types

A type constructor is a meta type which de�nes a family of types� The
Set type constructor de�nes the family of types that includes Set�Person��
Set�Department�� etc� New types are created by instantiating the meta type
with a speci�c type� like Person or Department�
The interface of a new type is determined by the particular type constructor

and its parameters� AQUA types with user�de�ned interfaces may also be
de�ned using a special �abstraction� type constructor� de�ned below� All types
de�ned using the abstraction constructor must provide their own new operation
for creating objects of that type� The operators of the AQUA algebra are the
methods on the AQUA type constructors�
We de�ne the following standard type constructors� Set�T� � a collection of

unique entities of the same type� Multiset�T� � a bag of entities of the same
type �i�e� an entity may appear more than once in a multiset
� Tuple�l� �
T�� � � � � ln � Tn
 � a �xed�length list of labeled entities of �possibly
 di�erent
types� Union�l� � T�� � � � � ln � Tn
 � a tagged union� similar to that found in



Pr
oc

. o
f t

he
 4

th
 In

tl.
 W

or
ks

ho
p 

on
 D

at
ab

as
e 

Pr
og

ra
m

m
in

g 
La

ng
ua

ge
s 

(D
BPL

), 
19

93

many programming languages� Function�T�� � � � � Tn� Tr
 � a named list of types�
the last of which is the output type of the function �the others being the input
types
� Abs�f� � Tf� � � � � � fn � Tf� 
 � abstraction� An abstraction is a new
abstract data type and has a collection of named functions� which form the
interface of the abstraction� �We leave the representation of the abstraction to
the implementation and do not discuss it here
� N�dimensional array�T��n�l� �
an n�dimensional collection of entities of the same type� individual entities can
be accessed directly� The parameter l is a list of n dimensions� at most one of
the dimensions may be of variable length� List�T� � a sequence of entities of
the same type� Tree�T� � a tree whose nodes all contain entities of the same
speci�ed type� and Graph�T� � a graph whose nodes all contain entities of the
same speci�ed type� Lists� trees� and graphs are not discussed further here� see
��	
 for a complete description of them� N�dimensional arrays are a subject of
our future research�

Abstractions� tuples and unions are subtypeable� Functions are subtypeable
using the standard contravariance rule� Sets andmultisets are not subtypeable�
As a reminder� the principle of substitutability states that a subtype may be
used anywhere its supertype may be used� If we allowed sets to be subtypeable�
then given a variable zoo with type Set�Animal
�and Dog v Animal� then we
could assign zoo an object of type Set�Dog
� and then we could also incorrectly
insert the elephant Dumbo� an animal� into zoo� a Set�Dog
� A similar argument
shows that multisets are not subtypeable�

��� Our Approach to Values

Mutable and immutable semantics are the key to incorporating the traditional
notions of object and value into the AQUA model� In the discussion that
follows� we use object to refer the the traditional notion of object� and use
AQUA object to refer to objects as they appear in AQUA� There are �so far

two possible semantics for AQUA objects� mutable and immutable� Other
semantics can be de�ned� and AQUA objects may have any semantics that has
been de�ned in the system and is applicable to that type�

AQUA supports the traditional notion of values via immutable semantics
for objects� If an AQUA object is immutable� its contents can never change�
and it becomes impossible to detect whether or not it is being shared � it
takes on the role of a value� The AQUA base types only support immutable
semantics� Traditionally� objects are used to achieve sharing� and values are
used to prevent sharing�

The type system will allow an immutable AQUA object to be assigned to
a variable referencing a mutable AQUA object� Variables only have a type�
not a semantics� For example� semantics allow us to create a single type� say
Person� which has mutable and immutable semantics� We can then create a
mutable Person and an immutablePerson� and use either one where a Person
is required� The behavior of the program depends on whether or not the Person
is mutable or immutable at the time that the code is executed� As discussed in
the next section� this allows us to have type compatible Person �objects� and
Person �values��



Pr
oc

. o
f t

he
 4

th
 In

tl.
 W

or
ks

ho
p 

on
 D

at
ab

as
e 

Pr
og

ra
m

m
in

g 
La

ng
ua

ge
s 

(D
BPL

), 
19

93

��� Examples

We will use the following schema de�nitions to show the use of the abstrac�
tion type constructor� and to set the stage for some sample queries described
later� The examples use the abstraction constructor to specify the interface of
of the abstract data type� and show a name implementation speci�cation to
describe the representation of the abstract type� A Company is an abstract
data type which uses a tuple as its representation� and which supplies a set of
methods to access and update its name and address� Person is similar� but
it also has an Employer �eld which is of type Company� We also have a set
of Company objects� Companies � Set�Company
 and a set of Person ob�
jects� Persons � Set�Person
� No semantics is presented since our language
for de�ning semantics is incomplete�

type Company �
abs�name�Company
� � String�
change name�Company� String
�
address�Company
� � String�
change address�Company� String
�



Implementation CompanyA for Company �
Tuple�name � string� address � string


type Person �
abs�name�Person
� � String�
address�Person
� � String�
employer�Person
� � Company�



Implementation PersonA for Person �
Tuple�name � string� address � string�

employer � Company


� The AQUA Approach to Algebra Design

In this section� we discuss some of the design issues related to the AQUA
algebra� including the syntax of terms� the use of type parameters� and the
treatment of equality�

��� Syntax

Expressions in the algebra are represented by terms� A term is either� a vari�
able� constant or function symbol� a lambda abstraction of the form ��x� �
T�� x� � T�� � � � � xn � Tn
t � R � or an application� t��t� � T�� � � � � tk � Tk
�tk�� �
Tk��� � � � � tn � Tn
 � R� where t�� t�� � � � � tn are terms and t� must have a func�
tion type� A lambda abstraction can be given a name� For example� the term
Names � apply���p
invoke�name
�p

�Persons
 is a named term returning



Pr
oc

. o
f t

he
 4

th
 In

tl.
 W

or
ks

ho
p 

on
 D

at
ab

as
e 

Pr
og

ra
m

m
in

g 
La

ng
ua

ge
s 

(D
BPL

), 
19

93

a set containing the names of each person in a set of Persons� Apply �de�
�ned in table 	
� invoke and name are function symbols� p is a variable� and
��p
invoke�name
�p
 is a lambda abstraction�
We note that predicates must be functions with boolean return type� Pred�

icates are composed using AQUA�s built�in operators and its term language�
which is based on lambda calculus� They are normally passed as parameters
to operators like select� join� exists� and forall� All queries result in the cre�
ation of a new AQUA object as the result� For example� the query discussed in
the previous paragraph would result in a new set containing the names of each
person in a set of Persons�
Some of the AQUA operations are parameterized by an equality� a type� a

function� a name� or some combination of these� In the next subsections we de�
scribe type parameters and equalities� before actually describing the operations
in Section ��
We adopt some conventions and notations for de�ning the operators� A and

B are used to refer to the input sets or multisets� R is used to denote the output
set�multiset or the result set�multiset� a is used to represent an element of the
input set or multisetA� f � g and h are used to represent functions� id represents
the default equality �identity
� and p represents a predicate� T indicates the
result type of an operator� Tuples are represented by ��� L is a tuple �eld
name� and a�L means the tuple value a minus the �eld labeled L� Other
notations will be de�ned as needed�

��� Type Parameters

The parameterized type constructors� and subtyping requirements for types�
are designed to support static type�checking� One choice that was made to
assist in this support is to explicitly give a result type as a parameter to some
of the algebraic operations�
Many of the operations in our algebra construct instances of new types as

their result� In such cases� inferring the result type is not easy in an alge�
bra that allows multiple supertypes and union types� In order to resolve this
di culty and provide �exibility� the algebra takes the result type as an input
parameter for operators in which we may not always have a unique supertype
when combining inputs of compatible �but not identical
 types� For example�
consider the union of a set of oranges and a set of lemons� The type of the
result can be either a set of �fruits� or a set of �good sources of Vitamin C�
�Figure 	
� To resolve this� the user has to specify the type of the result�

Figure 	� Result type for union with multiple supertypes



Pr
oc

. o
f t

he
 4

th
 In

tl.
 W

or
ks

ho
p 

on
 D

at
ab

as
e 

Pr
og

ra
m

m
in

g 
La

ng
ua

ge
s 

(D
BPL

), 
19

93

��� Equality

Some types may have more than one useful notion of equality� The default
equality for every type is identity� The built�in primitive types �integer� float�
boolean and string
 have the standard de�nitions for equality� Meaningful user�
de�ned equalities should induce an equivalence relation over all the instances
of that type�
Equality is essential to the de�nition of some operators� including union�

intersection� di�erence� membership� LFP �least �xed point
� and nest for
sets� and union� additive union� intersection and di�erence for multisets�
These operators take a user de�ned equality as parameter� This equality is
used to eliminate duplicates in the result�
The set union and LFP operations display the following useful property� If

the result of� say� a union operator is used as input to another operator� then it
is not necessary to eliminate duplicates when the union is computed� Instead�
the subsequent operator�s
 assume responsibility for eliminating duplicates� In
this case identity should be supplied as the equality parameter for the union�
In the case where union or LFP is the outermost operator� or the case where
an existing set is viewed through a di�erent �other than the one that created it

equality� the dup elim operator is used to eliminate duplicates according to a
user speci�ed equality� This operator takes an equality �in the form of a binary
predicate
 as a parameter� and eliminates duplicates under that equality� Any
object that is a duplicate under identity is a duplicate under the user equality�
but not vice versa�

Dup elim can be de�ned in terms of two other operators� group and
choose� If eq is a binary predicate� and S is a set�

dup elim�eq
�A
 � apply�choose � snd

�group���a
Immutable�

select���b
eq�a� b

�A

�A




The Group�f
�S
 operator groups the elements of set S into equivalence
classes by using the f parameter� returning a set of tuples whose �rst �eld is the
result of applying f to a member of an equivalence class and whose second �eld
is the set of instances in the equivalence class� In the de�nition of dup elim�
this produces a set of tuples with two �eld� each of which is a set of elements
which is equivalent to an element a of A� This set of tuples is supposed to
represent the set of equivalence classes induced by the equality eq to dup elim�
There is a small problem� The result of a select is always a new set object�
This means that there will be tuples which have �rst elements which are not
identical� but would be the same values� The second elements of such tuples
would be immutable objects �values
 according to the de�nition of group� Such
tuples should be considered duplicates and one should be removed� but the
non�identical �rst �elds prevent the elimination of the tuples� Immutable�x

is a semantics cast� which forces the expression x to have immutable �value

semantics� Applying Immutable to the result of the select forces the set
values to be created� Now group will be able to eliminate duplicate tuples
representing a single equivalence class� To obtain the �nal result� we pick one
element from each equivalence class to serve as a representative for that class�
This is accomplished by extracting the second �eld of each tuple �using the snd



Pr
oc

. o
f t

he
 4

th
 In

tl.
 W

or
ks

ho
p 

on
 D

at
ab

as
e 

Pr
og

ra
m

m
in

g 
La

ng
ua

ge
s 

(D
BPL

), 
19

93

De�nitions

apply�f
�A
 � ff�a
ja � Ag
select�p
�A
 � faja � A� p�a
g
exists�p
�A
 � �a � A�p�a

forall�p
�A
 � �a � A�p�a


mem�a� eq
�A
 � �x � A�eq�a� x


fold�u� f��
�A
 �

����
���

u� A � �
M
a�A

f�a
� A 	� �

Table 	� Unary Set Iterators

function
� and the using the Choose operator to nondeterministically select on
element of the resulting set� The dup elimed set has no duplicates with respect
to the new equality� thus it also has no duplicates according to identity� See
Tables 	 and � for de�nitions of apply� choose� group� and select�
For many queries� this approach allows any equality to be used at any

point during query processing without compromising our notion of �set�� The
operators remain de�ned in the abstract and we are assured that they can
handle any kind of equality that may arise� including anything the writer of a
query might wish to pass in as a parameter�
Consider the union of two sets A � f�	� a
� ��� b
g and B � f��� a
� ��� b
g�

Assume we want A union B using a notion of equality that says two elements
are equal if their �elds are pairwise equal� so that the ��� b
 in A and the ��� b

in B are equal� The result will then have three elements� f�	� a
� ��� b
� ��� a
g�
Now suppose we want A union B using a notion of equality that says two

elements are equal if their second �elds are equal� The �	� a
 in A and the ��� a

in B are also equal� The required result is then f�	� a
� ��� b
g or f��� a
� ��� b
g�
Either result is correct since the equality only examines the second element
of each tuple� ��� a
 could legally be in the result� but is disallowed by our
de�nition of dup elim � it was not in the set before dup elim was applied�

� The Operators

In this section we describe the operations de�ned on the di�erent types� Some
of these operators can be expressed in terms of some others� leading to many
redundancies in the operator set� They have been retained partly because they
permit some expressions to be written with greater conciseness and clarity
than would otherwise be possible� and partly because they lend themselves to
specialized implementations and optimizations that can be more e cient than
those of a more general operator�

��� Set Operators

This subsection describes the set operators in our algebra� Most of these oper�
ators are derived from similar operators in the literature ��� ��� ��
 and excep�
tions are noted as they arise� It is our combination and utilization of them� in



Pr
oc

. o
f t

he
 4

th
 In

tl.
 W

or
ks

ho
p 

on
 D

at
ab

as
e 

Pr
og

ra
m

m
in

g 
La

ng
ua

ge
s 

(D
BPL

), 
19

93De�nitions

union�eq� T 
�A�B
 � dup elim�eq
�fxj �x � A or x � B
g


intersect�eq� T 
�A�B
 �
dup elim�eq
�fxj �x � A or x � B
 and
�mem�x� eq
�A
 andmem�x� eq
�B

g


di��eq� T 
�A�B
 �
dup elim�eq
�fxj x � A
and 
�mem�x� eq
�B

g


Table �� Binary Set Operators

De�nition

LFP�eq� f
 � dup elim�eq
�
��
i��

�f i�fg




Table �� Least Fixed Point Operator

De�nitions

set�a
 � fag
choose�A
 � some a � A

group�f
�A
 �
f�f�a
� eqclass�a

ja � Ag�
where eqclass�a
 �

fa�ja� � A� f�a
 � f�a�
g

dup elim�eq
�A
 �
R � A s�t� �x� y � R� eq�x� y
� id�x� y
�
and �x � A� �y � R s�t� eq�x� y


nest�eq � L
�A
 �
ftup concat�a�L�� L � fb�Ljb � A and

eq t�a�L� b�L
g �
ja � Ag

unnest�L
�A
 �
ftup concat�a�L�� L � s �
ja � A and

s � a�Lg
convert�A
 � f
 xjx � A 
g

Table �� Set Restructuring Operators

De�nitions

join�p� f
�A�B
 � ff�a� b
ja � A� b � B� p�a� b
g
tup join�p
�A�B
 � join�p� tup concat
�A�B


outer join�p� f� g� h� T 
�A�B
 �
ff�a� b
ja � A� b � B� p�a� b
g
�fg�a
ja � A� �b � B�
p�a� b
g
�fh�b
jb � B� �a � A�
p�a� b
g

Table �� Join Operators



Pr
oc

. o
f t

he
 4

th
 In

tl.
 W

or
ks

ho
p 

on
 D

at
ab

as
e 

Pr
og

ra
m

m
in

g 
La

ng
ua

ge
s 

(D
BPL

), 
19

93

addition to the original operators� that makes this approach more �exible than
previous ones�
A list of all the operators for sets and a brief de�nition for each of them�

is given in tables 	 through �� Table 	 lists the unary set operators� table �
deals with the binary set operators� table � de�nes the least �xed point �LFP

operator� table � describes the set restructuring operators� and table � lists the
various join operators� In the rest of the subsection� we expand upon issues
about some of the operators of the algebra�
The fold operator is a powerful operator � fold �u� f��
�A
 reduces set A

to a single value by applying f to each element and iteratively combining the
results with a dyadic operator �� u is the result of fold on the empty set� For
example� set collapse can be implemented using fold� the identity function�
and the union operator �using the default equality
�

fold �fg� ��x
x�union�id

�ff	� �g� f�� ���g�f�gg
 � f	� �� �� ���g

Operators exists� forall and mem return a boolean value and can be used
as predicate formers� Nest and unnest have been de�ned in table � using a
single tuple �eld name L� However� this de�nition can be easily extended to a
list of �eld names� In such a case� a�L refers to the tuple value a minus the
�elds in the list L and a�L is the concatenation of all the values of the �elds
in list L� To compare the equality of a pair of tuples minus the �eld L� we use
the equality eqt� which does a pairwise comparison of the contents of each �eld
using the equality eq�
The binary set operators� union� intersection and di�erence are the fa�

miliar set�theoretic operations� however our de�nitions are complicated by con�
siderations of typing� When two sets are combined using a binary set operator�
it is not necessary that they have the same type� As in EXCESS ��
� these
operators take an extra argument that speci�es the type of the result� as dis�
cussed in subsection ���� The result type of union has to be a supertype of the
types of the input sets� However� in intersection the result type can either be
a supertype of both input types or be one of the input types� In the case of
di�erence� the result type has to either be the type of the �rst input set or one
of its supertypes�
To brie�y illustrate some of the set operators� consider a query that �nds

all of the people who live in the same city in which they work and groups them
based on the name of this city� This is done by using the employer �eld of a
Person object� We use A�B as a shorthand for invoke �A�B
� which invokes
method B on object A�

LiveWhereWorkPeople �
select���x
x�address � x�employer�address
�Persons


Next� we use group to group the people in LiveWhereWorkPeople by the
city in which they live�

group���x
x�address
�LiveWhereWorkPeople


The result consists of a set of ordered pairs �city� people
 where city is the
name of a city in which at least one person both lives and works and people is



Pr
oc

. o
f t

he
 4

th
 In

tl.
 W

or
ks

ho
p 

on
 D

at
ab

as
e 

Pr
og

ra
m

m
in

g 
La

ng
ua

ge
s 

(D
BPL

), 
19

93

De�nitions

multiset�a
 � f
 a 
g
convert�A
 � f xjx � A g

dup elim�eq
�A
 � convert�dup elim�eq
�convertA



Table �� Multiset Restructuring Operators

a set of Person objects all of whom live and work in city�
The various join operators deserve special mention due to their general�

ity� Join takes a function as a parameter� thus allowing the user to de�ne
a �combining� function� The other join operators are similar generalizations
involving a predicate and a function� Note that the union used in the de�nition
of outer join is the set union� using the default equality� The resultant type
T of the outer join must be a supertype of the result types of functions f � g
and h� to allow unioning the results of the functions� Left and right outer joins
can be expressed in terms of outer join with the appropriate interpretation
of null values� Familiar join operators like natural join� equijoin� semijoin
and antijoin are not primitives in the algebra� but they can be expressed easily
in terms of the included join operators�
The LFP operator �	�
 is de�ned in table �� The function f is of type

T � T � where T is a set type� The notation f i is equivalent to f�f i��
� The
union for LFP uses the equality parameter for LFP as its equality parameter�
and its type parameter� T � must be the input�result type of f � We also make
the restriction that f be �monotonic� in the sense that A � B � f�A
 � f�B
�

��� Multiset Operators

Multisets support nearly all the same operations as sets� with very similar
semantics in most cases� The di�erence between a multiset and a set is that a
multiset may contain multiple occurrences of the same element� The notation
used to denote multisets is f
 e�� e�� � � � � en 
g� where ei are the elements of
the multiset� A multiset former is similar to a set former� so the multiset
former f
 xjx � M and x � 	 
g is read as �the multiset of items x� such
that each occurrence of x inM is greater than one�� We de�ne the cardinality
of an element of a multiset as the number of occurrences of that element in
the multiset� The notation jAja means �the cardinality of a in multiset A��
Similarly� the notation jAjeq�a� means �the cardinality of elements �equal� to a
�where equality is determined by the equality operator� eq
 in multiset A�� We
will also speak of the cardinality of a multiset jAj� meaning its total element
count� tallying duplicates as many times as they occur� Multiset�T 
 denotes a
multiset containing objects of type T �
Most multiset operators are quite similar to the corresponding set operators�

except for the fact that the input and output types are multisets instead of sets�
Most of the formal de�nitions in tables 	� �� �� and � hold for multisets too�
The exceptions are multiset� dup elim� convert� de�ned in table �� and

union� additive union� intersection and di�erence which are de�ned in ta�
ble ��
In the binary operators on multisets� we �nd the greatest departure from

the corresponding set operators� All the binary operators are based on the



Pr
oc

. o
f t

he
 4

th
 In

tl.
 W

or
ks

ho
p 

on
 D

at
ab

as
e 

Pr
og

ra
m

m
in

g 
La

ng
ua

ge
s 

(D
BPL

), 
19

93

De�nitions

union�eq� T 
�A�B
 �
R �Multiset�T 
 such that �x � T�
jRjeq�x� � max�jAjeq�x�� jBjeq�x�

Also� x � R � �x � A
 or �x � B


additive union�eq� T 
�A�B
 �
R �Multiset�T 
 such that �x � T�
jRjeq�x� � jAjeq�x� � jBjeq�x�
Also� x � R � �x � A
 or �x � B


intersect�eq� T 
�A�B
 �
R �Multiset�T 
 such that �x � T�
jRjeq�x� � min�jAjeq�x�� jBjeq�x�

Also� x � R � �x � A
 or �x � B


di��eq� T 
�A�B
 �
R �Multiset�T 
 such that �x � T�
jRjeq�x� � max��� jAjeq�x� � jBjeq�x�

Also� x � R � �x � A
 or �x � B


Table �� Binary Multiset Operators

cardinality of the elements in the two input sets �table �
� For example� union
in a multiset is�

union �id� Int
�f
 	� 	� � 
g� f
 	� �� � 
g
 � f
 	� 	� �� �
g

However� regarding the typing of the arguments and the result� binary mul�
tiset operators are similar to the set operators� We also de�ne additive union
for multisets�

��� Other Type Operators

Besides sets and multisets� the algebra supports a host of other types� The
union type along with its constructor allows creation of discriminated unions�
The operations de�ned for the type are union� tagcase and typecase�
Union�U� tag� e
 creates an instance of union type U and initializes its contents
to be entity e with tag tag� Both tagcase �e
 and typecase �e
 selectively ex�
ecute a set of terms based either on the tag or the type of the union instance
e�
Function types represent functions� which take some number of typed pa�

rameters and return a single typed result� Instances of function types are
created by the use of typed lambda expressions� These instances cannot be
tested for equality� since it is impossible to compare two functions�
Tuples are records with named �elds� with the familiar operators for in�

stance creation �tuple
� concatenation �tup concat
� and �eld selection �se�
lect �eld or in�x ���
� Su cient care is taken to avoid duplicate �eld names
in tup concat�
Boolean is actually a type rather than a constructor� Booleans are used

to represent truth values for conditionals and are provided as the result of
comparisons and quanti�ers �the set operators exists and forall
� Operations
on booleans are and� or� and not�
Abstract data types are composite types whose elements are accessed only

via a set of functions� which are called the interface� The functions are accessed
via the invoke�I� f
 operator which invokes f on instance I�



Pr
oc

. o
f t

he
 4

th
 In

tl.
 W

or
ks

ho
p 

on
 D

at
ab

as
e 

Pr
og

ra
m

m
in

g 
La

ng
ua

ge
s 

(D
BPL

), 
19

93

Type Operators

Set Set� Choose� Union� Fold� LFP
Multiset Multiset� Choose� Additive Union� Fold� LFP
Union Make union� Tagcase� Typecase
Tuple Tuple� Select �eld
Boolean And� Not
Abs New� Invoke

Table �� Primitive AQUA Operators

��� Primitive Operators

Table � provides a minimal set of primitive operators� for each type� All non�
primitive operators can be de�ned in terms of the primitive operators for the
type� For example� mem for a set can be de�ned in terms of fold�

mem�eq� a
�A
 � fold�false� ��x
eq�x� a
� or
�A


Similarly� select can also be expressed in terms of fold�

select�p
�A
 � fold�f g� ��x
if p�x
 then set�x
 else f g� union�id� T 

�A


Dup elim can also be expressed using fold with set and union �using
identity as the union equality
� Indeed� most operations �e�g�� union� intersect
and di� with equality parameters� apply� group
 can be de�ned with those
three primitive operations�

� Conclusions

This paper has brie�y summarized the AQUA data model and algebra� It is
proposed as the input language for object�oriented query optimizers� It has
been designed to cover the functionality of many existing query languages� and
to provide the maximum potential for optimization� As a result� the set of
operators is purposefully not minimal� We have illustrated its use with a few
simple examples�
The AQUA data model embodies a uniform approach to objects and values�

Values are simply immutable objects� They are objects in all other respects�
They have an abstract interface� and they possess an identity that can be used
to refer to them�
A type describes syntactic properties of objects and their methods� Seman�

tic properties of a type are supplied by an axiomatic speci�cation� called its
semantics� that is separated from the type de�nition �i�e�� syntax
� Immutabil�
ity is an example of something that would be speci�ed in the semantics� A given
type can be associated with multiple semantics� and each of these semantics
can be implemented in many ways� Currently we provide a default mechanism
for determining the semantics of objects that are results of algebraic queries
and we provide a mechanism for overriding this default�

�The primitive set union in the table uses identity for equality



Pr
oc

. o
f t

he
 4

th
 In

tl.
 W

or
ks

ho
p 

on
 D

at
ab

as
e 

Pr
og

ra
m

m
in

g 
La

ng
ua

ge
s 

(D
BPL

), 
19

93

This paper has discussed algebraic operators for the Set and the Multiset
types� We also propose an extension to AQUA to include algebraic operators
for other bulk types such as List� Tree� and Graph ��	
�

Acknowledgements

Thanks to� Catriel Beeri� DARPA� Leo Fegaras� David Maier� Scott Meyers�
and Hagit Shatkay�

References

�	
 S� Abiteboul and P� Kanellakis� Object identity as a query language primi�
tive� In James Cli�ord� Bruce Lindsay� and David Maier� editors� Proceed�
ings of the SIGMOD International Conference on Management of Data�
ACM Press� Portland� Oregon� June 	����

��
 S� Abiteboul� E� Simon� and V� Vianu� Non�deterministic languages
to express deterministic transformations� In Proceedings of the Ninth
ACM SIGACT�SIGMOD Symposium on Principles of Database Systems�
Nashville� Tennesee� April 	����

��
 Antonio Albano� Giorgio Ghelli� and Renzo Orsini� Objects for a database
programming language� In Kanellakis and Schmidt �	�
� pages ��������

��
 M� P� Atkinson� C� Lecluse� P� Philbrow� and P� Richard� Design issues in
a map language� In Kanellakis and Schmidt �	�
� pages ������

��
 Jay Banerjee� Hong�Tai Chou� Jorge F� Garza� Won Kim� Darrell Woelk�
Nat Ballou� and Hyoung�Joo Kim� Data model issues for object�oriented
applications� ACM Transactions on O�ce Information Systems� ��	
���
��� January 	����

��
 Catriel Beeri and Yoram Kornatzky� Algebraic optimization of object�
oriented query languages� In S� Abiteboul and P� C� Kanellakis� editors�
Proceedings of the Third International Conference on Database Theory�
pages ������ Paris� France� December 	����

��
 Val Breazu�Tannen� Peter Buneman� and Shamim Naqvi� Structural re�
cursion as a query language� In Kanellakis and Schmidt �	�
� pages ��	��

��
 Peter Buneman and Atsushi Ohori� A type system that reconciles classes
and extents� In Kanellakis and Schmidt �	�
� pages 	�	�����

��
 M� Carey� D� DeWitt� and S� Vandenberg� A data model and query lan�
guage for EXODUS� In Haran Boral and Per ake Larson� editors� Proceed�
ings of the SIGMOD International Conference on Management of Data�
pages �	������ Chicago� Illinois� June 	����

�	�
 A� Chandra� Theory of database queries� In Proc	 Conf	 on Principles of
Database Systems� pages 	��� 	����



Pr
oc

. o
f t

he
 4

th
 In

tl.
 W

or
ks

ho
p 

on
 D

at
ab

as
e 

Pr
og

ra
m

m
in

g 
La

ng
ua

ge
s 

(D
BPL

), 
19

93

�		
 Scott Daniels� Goetz Graefe� Thomas Keller� David Maier� Duri Schmidt�
and Bennet Vance� Query Optimization in Revelation� an Overview� IEEE
Data Engineering Bulletin� 	���
������� June 	��	�

�	�
 Umeshwar Dayal� Frank Manola� Alejandro Buchmann� Upen Chak�
ravarthy� David Goldhirsch� Sandra Heiler� Jack Orenstein� and Arnon
Rosenthal� Simplifying complex objects� The PROBE approach to mod�
elling and querying them� In Stanley B� Zdonik and David Maier� editors�
Readings in Object�Oriented Database Systems� pages �������� Morgan
Kaufmann Publishers� Inc�� Los Altos� California� 	����

�	�
 Adele Goldberg and David Robson� Smalltalk�
�� The Language and its
Implementation� Addison�Wesley� Reading� MA� 	����

�	�
 John V� Guttag� James J� Horning� and Jeanette M� Wing� The Larch
family of speci�cation languages� IEEE Software� ���
������� September
	����

�	�
 Hull and Yoshikawa� ILOG� Declarative creation and manipulation of ob�
ject identi�ers� In Dennis McLeod� Ron Sacks�Davis� and Hans Schek�
editors� Proceedings of the 
�th International Conference on Very Large
Data Bases� Morgan Kaufmann Publishers� Inc�� Brisbane� Australia� Au�
gust 	����

�	�
 IEEE� Proceedings of the Sixth International Conference on Data Engi�
neering� Los Angeles� California� February 	���� IEEE Computer Society
Press�

�	�
 Paris Kanellakis� Elements of relational database theory� In J� van
Leeuwen� editor� Handbook of Theoretical Computer Science� volume ��
chapter 	�� pages 	����		��� Elsevier Science Publishers B�V�� Amster�
dam� 	����

�	�
 Paris Kanellakis and Joachim W� Schmidt� editors� Bulk Types � Persis�
tent Data� The Third International Workshop on Database Programming
Languages� Nafplion� Greece� August 	��	� Morgan Kaufmann Publishers�
Inc�

�	�
 G�M� Kuper� The Logical Data Model� A New Approach to Database Logic�
Ph�D� thesis� Dept� of Computer Science� Stanford University�� Stanford�
CA� Sept 	����

���
 David Maier� Jacob Stein� Allen Otis� and Alan Purdy� Development of
an object�oriented DBMS� In Norman Meyrowitz� editor� Proceedings of
the Conference on Object�oriented Programming Systems� Languages and
Applications� pages �������� Portland� Oregon� September�October 	����

��	
 Florian Matthes and JoachimW� Schmidt� Bulk types� Built�in or add�on!
In Kanellakis and Schmidt �	�
� pages ������

���
 Bertrand Meyer� Object�Oriented Software Construction� Prentice�Hall�
Englewood Cli�s� New Jersey� 	����



Pr
oc

. o
f t

he
 4

th
 In

tl.
 W

or
ks

ho
p 

on
 D

at
ab

as
e 

Pr
og

ra
m

m
in

g 
La

ng
ua

ge
s 

(D
BPL

), 
19

93

���
 Gail Mitchell� Stanley B� Zdonik� and Umeshwar Dayal� An Architecture
for Query Processing in Persistent Object Stores� In Proceedings of the
Hawaii International Conference on System Sciences� volume II� pages
�������� January 	����

���
 S� Osborn� Identity� equality� and query optimization� In K� Dittrich�
editor� Advances in Object�Oriented Database Systems� Berlin� Germany�
	����

���
 Joel Richardson and Peter Schwarz� MDM� An object�oriented data model�
In Kanellakis and Schmidt �	�
� pages ������

���
 L� Rowe and M� Stonebraker� The POSTGRES data model� In Proceedings
of the Thirteenth Very Large Databases Conference� Morgan Kaufmann
Publishers� Inc�� 	����

���
 Steve Rozen and Dennis Shasha� Rationale and design of Bulk� In Kanel�
lakis and Schmidt �	�
� pages �	����

���
 Gail M� Shaw and Stanley B� Zdonik� A query algebra for object�oriented
databases� In Proceedings of the Sixth International Conference on Data
Engineering �	�
� pages 	���	���

���
 David D� Straube and M� Tamer Ozsu� Queries and query processing in
object�oriented database systems� ACM Transactions on O�ce Informa�
tion Systems� ���
� Oct 	����

���
 B� Stroustrup� The C�� Programming Language� Addison�Wesley Pub�
lishing Company� Reading� Massachusetts� second edition� 	����

��	
 Bharathi Subramanian� Stanley B� Zdonik� Theodore W� Leung� and
Scott L� Vandenberg� Ordered types in the AQUA data model� In Pro�
ceedings of the Fourth International Workshop on Database Programming
Languages� New York� New York� August 	���� Springer Verlag�

���
 B� Vance� Towards an object�oriented query algebra� Tech� Report
CS�E�	����� Dept� of Computer Science and Eng�� Oregon Graduate In�
stitute� Beaverton� OR� January 	����

���
 S� Vandenberg and D� DeWitt� Algebraic support for complex objects
with arrays� identity� and inheritance� In James Cli�ord and Roger King�
editors� Proceedings of the SIGMOD International Conference on Manage�
ment of Data� pages 	���	��� Denver� Colorado� May 	��	�



Pr
oc

. o
f t

he
 4

th
 In

tl.
 W

or
ks

ho
p 

on
 D

at
ab

as
e 

Pr
og

ra
m

m
in

g 
La

ng
ua

ge
s 

(D
BPL

), 
19

93


